一致有界原理在矩阵变换中的应用

IF 1 Q1 MATHEMATICS
M. Sarıgöl
{"title":"一致有界原理在矩阵变换中的应用","authors":"M. Sarıgöl","doi":"10.15330/cmp.15.1.236-245","DOIUrl":null,"url":null,"abstract":"Using the uniform boundedness principle of Maddox, we characterize matrix transformations from the space $(\\ell_{p}) _{T}$ to the spaces $m(\\phi )$ and $n(\\phi )$ for the case $1\\leq p\\leq \\infty$, which correspond to bounded linear operators. Here $(\\ell _{p})_{T}$ is the domain of an arbitrary triangle matrix $T$ in the space $\\ell _{p}$, and the spaces $m(\\phi )$ and $n(\\phi )$ are introduced by W.L.C. Sargent. In special cases, we get some well known results of W.L.C. Sargent, M. Stieglitz and H. Tietz, E. Malkowsky and E. Savaş. Also we give other applications including some important new classes.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of uniform boundedness principle to matrix transformations\",\"authors\":\"M. Sarıgöl\",\"doi\":\"10.15330/cmp.15.1.236-245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the uniform boundedness principle of Maddox, we characterize matrix transformations from the space $(\\\\ell_{p}) _{T}$ to the spaces $m(\\\\phi )$ and $n(\\\\phi )$ for the case $1\\\\leq p\\\\leq \\\\infty$, which correspond to bounded linear operators. Here $(\\\\ell _{p})_{T}$ is the domain of an arbitrary triangle matrix $T$ in the space $\\\\ell _{p}$, and the spaces $m(\\\\phi )$ and $n(\\\\phi )$ are introduced by W.L.C. Sargent. In special cases, we get some well known results of W.L.C. Sargent, M. Stieglitz and H. Tietz, E. Malkowsky and E. Savaş. Also we give other applications including some important new classes.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.1.236-245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.236-245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用Maddox的一致有界原理,我们刻画了$1\leq p\leq \infty$情况下从空间$(\ell_{p}) _{T}$到空间$m(\phi )$和$n(\phi )$的矩阵变换,这对应于有界线性算子。其中$(\ell _{p})_{T}$是空间$\ell _{p}$中任意三角形矩阵$T$的定域,其中$m(\phi )$和$n(\phi )$是W.L.C. Sargent引入的。在特殊情况下,我们得到了W.L.C. Sargent、M. Stieglitz和H. Tietz、E. Malkowsky和E. savaku的一些著名结果。我们还提供了其他应用程序,包括一些重要的新类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of uniform boundedness principle to matrix transformations
Using the uniform boundedness principle of Maddox, we characterize matrix transformations from the space $(\ell_{p}) _{T}$ to the spaces $m(\phi )$ and $n(\phi )$ for the case $1\leq p\leq \infty$, which correspond to bounded linear operators. Here $(\ell _{p})_{T}$ is the domain of an arbitrary triangle matrix $T$ in the space $\ell _{p}$, and the spaces $m(\phi )$ and $n(\phi )$ are introduced by W.L.C. Sargent. In special cases, we get some well known results of W.L.C. Sargent, M. Stieglitz and H. Tietz, E. Malkowsky and E. Savaş. Also we give other applications including some important new classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信