Navier-Stokes流的非唯一性估计及短时渐近展开式

IF 1.8 1区 数学 Q1 MATHEMATICS, APPLIED
Z. Bradshaw, P. Phelps
{"title":"Navier-Stokes流的非唯一性估计及短时渐近展开式","authors":"Z. Bradshaw, P. Phelps","doi":"10.4171/aihpc/92","DOIUrl":null,"url":null,"abstract":"There is considerable evidence that solutions to the non-forced 3D Navier-Stokes equations in the natural energy space are not unique. Assuming this is the case, it becomes important to quantify how non-uniqueness evolves. In this paper we provide an algebraic estimate for how rapidly two possibly non-unique solutions can separate over a compact spatial region in which the initial data has sub-critical regularity. Outside of this compact region, the data is only assumed to be in the scaling critical weak Lebesgue space and can be large. In order to establish this separation rate, we develop a new spatially local, short-time asymptotic expansion which is of independent interest.","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"208 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of non-uniqueness and short-time asymptotic expansions for Navier–Stokes flows\",\"authors\":\"Z. Bradshaw, P. Phelps\",\"doi\":\"10.4171/aihpc/92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is considerable evidence that solutions to the non-forced 3D Navier-Stokes equations in the natural energy space are not unique. Assuming this is the case, it becomes important to quantify how non-uniqueness evolves. In this paper we provide an algebraic estimate for how rapidly two possibly non-unique solutions can separate over a compact spatial region in which the initial data has sub-critical regularity. Outside of this compact region, the data is only assumed to be in the scaling critical weak Lebesgue space and can be large. In order to establish this separation rate, we develop a new spatially local, short-time asymptotic expansion which is of independent interest.\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"208 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/aihpc/92\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/92","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

有相当多的证据表明,自然能量空间中非强迫三维Navier-Stokes方程的解不是唯一的。假设是这样,那么量化非唯一性如何演变就变得很重要。在本文中,我们提供了两个可能非唯一解在初始数据具有亚临界正则性的紧空间区域上分离的速度的代数估计。在这个紧凑区域之外,数据只被假设在缩放临界弱勒贝格空间中,并且可以很大。为了确定这种分离率,我们开发了一个新的空间局部、短时渐近展开式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of non-uniqueness and short-time asymptotic expansions for Navier–Stokes flows
There is considerable evidence that solutions to the non-forced 3D Navier-Stokes equations in the natural energy space are not unique. Assuming this is the case, it becomes important to quantify how non-uniqueness evolves. In this paper we provide an algebraic estimate for how rapidly two possibly non-unique solutions can separate over a compact spatial region in which the initial data has sub-critical regularity. Outside of this compact region, the data is only assumed to be in the scaling critical weak Lebesgue space and can be large. In order to establish this separation rate, we develop a new spatially local, short-time asymptotic expansion which is of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.30%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信