{"title":"欧拉积的刚度","authors":"S. Koyama, N. Kurokawa","doi":"10.3792/pjaa.97.016","DOIUrl":null,"url":null,"abstract":": We report simple rigidity theorems for Euler products under deformations of Euler factors. Certain products of the Riemann zeta function are rigid in the sense that there exist no deformations which preserve the meromorphy on C .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rigidity of Euler products\",\"authors\":\"S. Koyama, N. Kurokawa\",\"doi\":\"10.3792/pjaa.97.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": We report simple rigidity theorems for Euler products under deformations of Euler factors. Certain products of the Riemann zeta function are rigid in the sense that there exist no deformations which preserve the meromorphy on C .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.97.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.97.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
: We report simple rigidity theorems for Euler products under deformations of Euler factors. Certain products of the Riemann zeta function are rigid in the sense that there exist no deformations which preserve the meromorphy on C .