{"title":"$E_3$中具有简单屈折中心的正屈折配合物的一些性质","authors":"Ye.N. Ishchenko","doi":"10.15421/247727","DOIUrl":null,"url":null,"abstract":"In the paper, we consider the special degenerate class of mormally-inflective complexes with simple inflective center in three-dimensional Euclidean space $E_3$. We prove that to construct this class of complexes one should take an arbitrary curve and draw sheaf of straight lines through each point of this curve. For arbitrary normally-inflective complex with simple inflective center we establish that such complex is fibered into two one-parametric families of congruences.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some properties of normally-inflective complexes with simple inflective center in $E_3$\",\"authors\":\"Ye.N. Ishchenko\",\"doi\":\"10.15421/247727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we consider the special degenerate class of mormally-inflective complexes with simple inflective center in three-dimensional Euclidean space $E_3$. We prove that to construct this class of complexes one should take an arbitrary curve and draw sheaf of straight lines through each point of this curve. For arbitrary normally-inflective complex with simple inflective center we establish that such complex is fibered into two one-parametric families of congruences.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/247727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/247727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On some properties of normally-inflective complexes with simple inflective center in $E_3$
In the paper, we consider the special degenerate class of mormally-inflective complexes with simple inflective center in three-dimensional Euclidean space $E_3$. We prove that to construct this class of complexes one should take an arbitrary curve and draw sheaf of straight lines through each point of this curve. For arbitrary normally-inflective complex with simple inflective center we establish that such complex is fibered into two one-parametric families of congruences.