次表面Torelli群上的广义Chillingworth类

H. Eroğlu
{"title":"次表面Torelli群上的广义Chillingworth类","authors":"H. Eroğlu","doi":"10.18910/79425","DOIUrl":null,"url":null,"abstract":"The contraction of the image of the Johnson homomorphism is called the Chillingworth class. In this paper, we derive a combinatorial description of the Chillingworth class for Putman's subsurface Torelli groups. We also prove the naturality and uniqueness properties of the map whose image is the dual of the Chillingworth classes of the subsurface Torelli groups. Moreover, we relate the Chillingworth class of the subsurface Torelli group to the partitioned Johnson homomorphism.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized Chillingworth Classes on Subsurface Torelli Groups\",\"authors\":\"H. Eroğlu\",\"doi\":\"10.18910/79425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The contraction of the image of the Johnson homomorphism is called the Chillingworth class. In this paper, we derive a combinatorial description of the Chillingworth class for Putman's subsurface Torelli groups. We also prove the naturality and uniqueness properties of the map whose image is the dual of the Chillingworth classes of the subsurface Torelli groups. Moreover, we relate the Chillingworth class of the subsurface Torelli group to the partitioned Johnson homomorphism.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18910/79425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18910/79425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

约翰逊同态象的缩形称为齐灵渥斯类。本文导出了Putman的地下Torelli群的Chillingworth类的一个组合描述。我们还证明了其象为地下Torelli群的Chillingworth类对偶的映射的自然性和唯一性。此外,我们将地下Torelli群的Chillingworth类与划分的Johnson同态联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Chillingworth Classes on Subsurface Torelli Groups
The contraction of the image of the Johnson homomorphism is called the Chillingworth class. In this paper, we derive a combinatorial description of the Chillingworth class for Putman's subsurface Torelli groups. We also prove the naturality and uniqueness properties of the map whose image is the dual of the Chillingworth classes of the subsurface Torelli groups. Moreover, we relate the Chillingworth class of the subsurface Torelli group to the partitioned Johnson homomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信