在lc表面上计算最小对数差异的除法

IF 0.8 3区 数学 Q3 MATHEMATICS
Jihao Liu, Lingyao Xie
{"title":"在lc表面上计算最小对数差异的除法","authors":"Jihao Liu, Lingyao Xie","doi":"10.1017/S0305004123000051","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$(X\\ni x,B)$\n be an lc surface germ. If \n$X\\ni x$\n is klt, we show that there exists a divisor computing the minimal log discrepancy of \n$(X\\ni x,B)$\n that is a Kollár component of \n$X\\ni x$\n . If \n$B\\not=0$\n or \n$X\\ni x$\n is not Du Val, we show that any divisor computing the minimal log discrepancy of \n$(X\\ni x,B)$\n is a potential lc place of \n$X\\ni x$\n . This extends a result of Blum and Kawakita who independently showed that any divisor computing the minimal log discrepancy on a smooth surface is a potential lc place.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"27 1","pages":"107 - 128"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Divisors computing minimal log discrepancies on lc surfaces\",\"authors\":\"Jihao Liu, Lingyao Xie\",\"doi\":\"10.1017/S0305004123000051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$(X\\\\ni x,B)$\\n be an lc surface germ. If \\n$X\\\\ni x$\\n is klt, we show that there exists a divisor computing the minimal log discrepancy of \\n$(X\\\\ni x,B)$\\n that is a Kollár component of \\n$X\\\\ni x$\\n . If \\n$B\\\\not=0$\\n or \\n$X\\\\ni x$\\n is not Du Val, we show that any divisor computing the minimal log discrepancy of \\n$(X\\\\ni x,B)$\\n is a potential lc place of \\n$X\\\\ni x$\\n . This extends a result of Blum and Kawakita who independently showed that any divisor computing the minimal log discrepancy on a smooth surface is a potential lc place.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"27 1\",\"pages\":\"107 - 128\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004123000051\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000051","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要设$(X\ni X,B)$是一个lc曲面元。如果$X\ni X $是klt,我们证明存在一个计算$(X\ni X,B)$的最小对数差异的除数,该除数是$X\ni X $的Kollár分量。如果$B\not=0$或$X\ni X $不是Du Val,我们证明任何计算$(X\ni X,B)$的最小对数差异的除数都是$X\ni X $的潜在lc位。这扩展了Blum和Kawakita的结果,他们独立地表明,在光滑表面上计算最小对数差异的任何除数都是潜在的lc位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divisors computing minimal log discrepancies on lc surfaces
Abstract Let $(X\ni x,B)$ be an lc surface germ. If $X\ni x$ is klt, we show that there exists a divisor computing the minimal log discrepancy of $(X\ni x,B)$ that is a Kollár component of $X\ni x$ . If $B\not=0$ or $X\ni x$ is not Du Val, we show that any divisor computing the minimal log discrepancy of $(X\ni x,B)$ is a potential lc place of $X\ni x$ . This extends a result of Blum and Kawakita who independently showed that any divisor computing the minimal log discrepancy on a smooth surface is a potential lc place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信