K. Lolos, I. Konstantinou, Verena Kantere, N. Koziris
{"title":"重新思考云弹性的强化学习","authors":"K. Lolos, I. Konstantinou, Verena Kantere, N. Koziris","doi":"10.1145/3127479.3131211","DOIUrl":null,"url":null,"abstract":"Cloud elasticity, i.e., the dynamic allocation of resources to applications to meet fluctuating workload demands, has been one of the greatest challenges in cloud computing. Approaches based on reinforcement learning have been proposed but they require a large number of states in order to model complex application behavior. In this work we propose a novel reinforcement learning approach that employs adaptive state space partitioning. The idea is to start from one state that represents the entire environment and partition this into finer-grained states adaptively to the observed workload and system behavior following a decision-tree approach. We explore novel statistical criteria and strategies that decide both the correct parameters and the appropriate time to perform the partitioning.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rethinking reinforcement learning for cloud elasticity\",\"authors\":\"K. Lolos, I. Konstantinou, Verena Kantere, N. Koziris\",\"doi\":\"10.1145/3127479.3131211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud elasticity, i.e., the dynamic allocation of resources to applications to meet fluctuating workload demands, has been one of the greatest challenges in cloud computing. Approaches based on reinforcement learning have been proposed but they require a large number of states in order to model complex application behavior. In this work we propose a novel reinforcement learning approach that employs adaptive state space partitioning. The idea is to start from one state that represents the entire environment and partition this into finer-grained states adaptively to the observed workload and system behavior following a decision-tree approach. We explore novel statistical criteria and strategies that decide both the correct parameters and the appropriate time to perform the partitioning.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3131211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3131211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rethinking reinforcement learning for cloud elasticity
Cloud elasticity, i.e., the dynamic allocation of resources to applications to meet fluctuating workload demands, has been one of the greatest challenges in cloud computing. Approaches based on reinforcement learning have been proposed but they require a large number of states in order to model complex application behavior. In this work we propose a novel reinforcement learning approach that employs adaptive state space partitioning. The idea is to start from one state that represents the entire environment and partition this into finer-grained states adaptively to the observed workload and system behavior following a decision-tree approach. We explore novel statistical criteria and strategies that decide both the correct parameters and the appropriate time to perform the partitioning.