在锁和钥匙下:一个多模态逻辑的证明系统

G. A. Kavvos, Daniel Gratzer
{"title":"在锁和钥匙下:一个多模态逻辑的证明系统","authors":"G. A. Kavvos, Daniel Gratzer","doi":"10.1017/bsl.2023.14","DOIUrl":null,"url":null,"abstract":"Abstract We present a proof system for a multimode and multimodal logic, which is based on our previous work on modal Martin-Löf type theory. The specification of modes, modalities, and implications between them is given as a mode theory, i.e., a small 2-category. The logic is extended to a lambda calculus, establishing a Curry–Howard correspondence.","PeriodicalId":22265,"journal":{"name":"The Bulletin of Symbolic Logic","volume":"6 1","pages":"264 - 293"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNDER LOCK AND KEY: A PROOF SYSTEM FOR A MULTIMODAL LOGIC\",\"authors\":\"G. A. Kavvos, Daniel Gratzer\",\"doi\":\"10.1017/bsl.2023.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a proof system for a multimode and multimodal logic, which is based on our previous work on modal Martin-Löf type theory. The specification of modes, modalities, and implications between them is given as a mode theory, i.e., a small 2-category. The logic is extended to a lambda calculus, establishing a Curry–Howard correspondence.\",\"PeriodicalId\":22265,\"journal\":{\"name\":\"The Bulletin of Symbolic Logic\",\"volume\":\"6 1\",\"pages\":\"264 - 293\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/bsl.2023.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bsl.2023.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在前人关于模态Martin-Löf类型理论的基础上,提出了一个多模态和多模态逻辑的证明体系。模态、模态和它们之间的含义的规范是作为模态理论给出的,即一个小的2类。将逻辑扩展到λ演算,建立Curry-Howard对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNDER LOCK AND KEY: A PROOF SYSTEM FOR A MULTIMODAL LOGIC
Abstract We present a proof system for a multimode and multimodal logic, which is based on our previous work on modal Martin-Löf type theory. The specification of modes, modalities, and implications between them is given as a mode theory, i.e., a small 2-category. The logic is extended to a lambda calculus, establishing a Curry–Howard correspondence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信