基于分数阶微积分的MEMS陀螺仪自适应神经滑模控制

Wang Huimin, Hua Liang, Guo Yunxiang, Chen Hailong, Lu Cheng
{"title":"基于分数阶微积分的MEMS陀螺仪自适应神经滑模控制","authors":"Wang Huimin, Hua Liang, Guo Yunxiang, Chen Hailong, Lu Cheng","doi":"10.1109/YAC.2019.8787729","DOIUrl":null,"url":null,"abstract":"An adaptive neural sliding mode control method is proposed for micro-electric-mechanical-system (MEMS) gyroscopes in this paper using fractional calculus. A new sliding surface containing a fractional order term is designed in the paper. And the fractional order term can improve control system dynamics and the fractional calculus is also used in adaptive laws to improve parameter identification performance. Besides, a radial basis function neural network is adopted to online estimate the upper bound of the lumped disturbance to reduce chattering phenomenon. The stability of the control system is proved using the Lyapunov stability theorem where adaptive laws for parameters and neural network weights are online tuned. Simulation results on a Z axis gyroscope is conducted to validate the effectiveness of the control method. performance.","PeriodicalId":6669,"journal":{"name":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"1997 1","pages":"602-606"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive neural Sliding Mode Control for MEMS gyroscope using fractional calculus\",\"authors\":\"Wang Huimin, Hua Liang, Guo Yunxiang, Chen Hailong, Lu Cheng\",\"doi\":\"10.1109/YAC.2019.8787729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive neural sliding mode control method is proposed for micro-electric-mechanical-system (MEMS) gyroscopes in this paper using fractional calculus. A new sliding surface containing a fractional order term is designed in the paper. And the fractional order term can improve control system dynamics and the fractional calculus is also used in adaptive laws to improve parameter identification performance. Besides, a radial basis function neural network is adopted to online estimate the upper bound of the lumped disturbance to reduce chattering phenomenon. The stability of the control system is proved using the Lyapunov stability theorem where adaptive laws for parameters and neural network weights are online tuned. Simulation results on a Z axis gyroscope is conducted to validate the effectiveness of the control method. performance.\",\"PeriodicalId\":6669,\"journal\":{\"name\":\"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"volume\":\"1997 1\",\"pages\":\"602-606\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YAC.2019.8787729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2019.8787729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于分数阶微积分的微机电系统(MEMS)陀螺仪自适应神经滑模控制方法。本文设计了一种新的包含分数阶项的滑动曲面。分数阶项可以改善控制系统的动力学特性,并将分数阶微积分应用于自适应律中以提高参数辨识性能。此外,采用径向基函数神经网络在线估计集总扰动的上界,以减少抖振现象。利用李雅普诺夫稳定性定理,在线调整参数和神经网络权值的自适应律,证明了控制系统的稳定性。在Z轴陀螺仪上进行了仿真,验证了控制方法的有效性。表演
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive neural Sliding Mode Control for MEMS gyroscope using fractional calculus
An adaptive neural sliding mode control method is proposed for micro-electric-mechanical-system (MEMS) gyroscopes in this paper using fractional calculus. A new sliding surface containing a fractional order term is designed in the paper. And the fractional order term can improve control system dynamics and the fractional calculus is also used in adaptive laws to improve parameter identification performance. Besides, a radial basis function neural network is adopted to online estimate the upper bound of the lumped disturbance to reduce chattering phenomenon. The stability of the control system is proved using the Lyapunov stability theorem where adaptive laws for parameters and neural network weights are online tuned. Simulation results on a Z axis gyroscope is conducted to validate the effectiveness of the control method. performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信