二维欧拉方程非对称对数螺旋涡片解的存在性

T. Cie'slak, P. Kokocki, W. O.za'nski
{"title":"二维欧拉方程非对称对数螺旋涡片解的存在性","authors":"T. Cie'slak, P. Kokocki, W. O.za'nski","doi":"10.2422/2036-2145.202208_003","DOIUrl":null,"url":null,"abstract":"We consider solutions of the 2D incompressible Euler equation in the form of $M\\geq 1$ cocentric logarithmic spirals. We prove the existence of a generic family of spirals that are nonsymmetric in the sense that the angles of the individual spirals are not uniformly distributed over the unit circle. Namely, we show that if $M=2$ or $M\\geq 3 $ is an odd integer such that certain non-degeneracy conditions hold, then, for each $n \\in \\{ 1,2 \\}$, there exists a logarithmic spiral with $M$ branches of relative angles arbitrarily close to $\\bar\\theta_{k} = kn\\pi/M$ for $k=0,1,\\ldots , M-1$, which include halves of the angles of the Alexander spirals. We show that the non-degeneracy conditions are satisfied if $M\\in \\{ 2, 3,5,7,9 \\}$, and that the conditions hold for all odd $M>9$ given a certain gradient matrix is invertible, which appears to be true by numerical computations.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Existence of nonsymmetric logarithmic spiral vortex sheet solutions to the 2D Euler equations\",\"authors\":\"T. Cie'slak, P. Kokocki, W. O.za'nski\",\"doi\":\"10.2422/2036-2145.202208_003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider solutions of the 2D incompressible Euler equation in the form of $M\\\\geq 1$ cocentric logarithmic spirals. We prove the existence of a generic family of spirals that are nonsymmetric in the sense that the angles of the individual spirals are not uniformly distributed over the unit circle. Namely, we show that if $M=2$ or $M\\\\geq 3 $ is an odd integer such that certain non-degeneracy conditions hold, then, for each $n \\\\in \\\\{ 1,2 \\\\}$, there exists a logarithmic spiral with $M$ branches of relative angles arbitrarily close to $\\\\bar\\\\theta_{k} = kn\\\\pi/M$ for $k=0,1,\\\\ldots , M-1$, which include halves of the angles of the Alexander spirals. We show that the non-degeneracy conditions are satisfied if $M\\\\in \\\\{ 2, 3,5,7,9 \\\\}$, and that the conditions hold for all odd $M>9$ given a certain gradient matrix is invertible, which appears to be true by numerical computations.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202208_003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202208_003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们考虑了二维不可压缩欧拉方程的$M\geq 1$同心对数螺旋形式的解。证明了一类非对称螺旋族的存在性,即单个螺旋的角在单位圆上不是均匀分布的。即,我们证明,如果$M=2$或$M\geq 3 $是一个奇数,使得某些非简并条件成立,那么,对于每个$n \in \{ 1,2 \}$,存在一个对数螺旋,其相对角的$M$分支任意接近$k=0,1,\ldots , M-1$的$\bar\theta_{k} = kn\pi/M$,其中包括亚历山大螺旋角的一半。通过数值计算,证明了在给定梯度矩阵可逆的情况下,$M\in \{ 2, 3,5,7,9 \}$满足非退化性条件,且对于所有奇数$M>9$均满足非退化性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of nonsymmetric logarithmic spiral vortex sheet solutions to the 2D Euler equations
We consider solutions of the 2D incompressible Euler equation in the form of $M\geq 1$ cocentric logarithmic spirals. We prove the existence of a generic family of spirals that are nonsymmetric in the sense that the angles of the individual spirals are not uniformly distributed over the unit circle. Namely, we show that if $M=2$ or $M\geq 3 $ is an odd integer such that certain non-degeneracy conditions hold, then, for each $n \in \{ 1,2 \}$, there exists a logarithmic spiral with $M$ branches of relative angles arbitrarily close to $\bar\theta_{k} = kn\pi/M$ for $k=0,1,\ldots , M-1$, which include halves of the angles of the Alexander spirals. We show that the non-degeneracy conditions are satisfied if $M\in \{ 2, 3,5,7,9 \}$, and that the conditions hold for all odd $M>9$ given a certain gradient matrix is invertible, which appears to be true by numerical computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信