自然干旱条件下塑料遮阳网对流换热特性研究

Q2 Social Sciences
Ahmed M Abdel-Ghanya, Ibrahim M Al-Helal
{"title":"自然干旱条件下塑料遮阳网对流换热特性研究","authors":"Ahmed M Abdel-Ghanya, Ibrahim M Al-Helal","doi":"10.32438//IJET.11415","DOIUrl":null,"url":null,"abstract":"Plastic nets are extensively used for shading purposes in arid regions such as in the Arabian Peninsula. Quantifying the convection exchange with shading net and understanding the mechanisms (free, mixed and forced) of convection are essential for analyzing energy exchange with shading nets. Unlike solar and thermal radiation, the convective energy, convective heat transfer coefficient and the nature of convection have never been theoretically estimated or experimentally measured for plastic nets under arid conditions. In this study, the convected heat exchanges with different plastic nets were quantified based on an energy balance applied to the nets under outdoor natural conditions. Therefore, each net was tacked onto a wooden frame, fixed horizontally at 1.5-m height over the floor. The downward and upward solar and thermal radiation fluxes were measured below and above each net on sunny days; also the wind speed over the net, and the net and air temperatures were measured, simultaneously. Nets with different porosities, colors and texture structures were used for the study. The short and long wave’s radiative properties of the nets were pre-determined in previous studies to be used. Re and Gr numbers were determined and used to characterize the convection mechanism over each net. The results showed that forced and mixed convection are the dominant modes existing over the nets during most of the day and night times. The nature of convection over nets depends mainly on the wind speed, net-air temperature difference and texture shape of the net rather than its color and its porosity.","PeriodicalId":35754,"journal":{"name":"International Journal of Energy Technology and Policy","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing the convective heat exchange with plastic shading nets under natural arid conditions\",\"authors\":\"Ahmed M Abdel-Ghanya, Ibrahim M Al-Helal\",\"doi\":\"10.32438//IJET.11415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic nets are extensively used for shading purposes in arid regions such as in the Arabian Peninsula. Quantifying the convection exchange with shading net and understanding the mechanisms (free, mixed and forced) of convection are essential for analyzing energy exchange with shading nets. Unlike solar and thermal radiation, the convective energy, convective heat transfer coefficient and the nature of convection have never been theoretically estimated or experimentally measured for plastic nets under arid conditions. In this study, the convected heat exchanges with different plastic nets were quantified based on an energy balance applied to the nets under outdoor natural conditions. Therefore, each net was tacked onto a wooden frame, fixed horizontally at 1.5-m height over the floor. The downward and upward solar and thermal radiation fluxes were measured below and above each net on sunny days; also the wind speed over the net, and the net and air temperatures were measured, simultaneously. Nets with different porosities, colors and texture structures were used for the study. The short and long wave’s radiative properties of the nets were pre-determined in previous studies to be used. Re and Gr numbers were determined and used to characterize the convection mechanism over each net. The results showed that forced and mixed convection are the dominant modes existing over the nets during most of the day and night times. The nature of convection over nets depends mainly on the wind speed, net-air temperature difference and texture shape of the net rather than its color and its porosity.\",\"PeriodicalId\":35754,\"journal\":{\"name\":\"International Journal of Energy Technology and Policy\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Technology and Policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32438//IJET.11415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Technology and Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32438//IJET.11415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在阿拉伯半岛等干旱地区,塑料网广泛用于遮阳目的。对遮阳网的对流交换进行量化,了解对流的自由、混合和强制机制,是分析遮阳网能量交换的基础。与太阳和热辐射不同,干旱条件下塑料网的对流能、对流换热系数和对流性质从未进行过理论估计或实验测量。在本研究中,基于室外自然条件下应用于网的能量平衡,对不同塑料网的对流换热进行了量化。因此,每个网都被钉在一个木制框架上,水平固定在1.5米高的地板上。在晴天时,分别在每个网的下方和上方测量太阳向上和向下辐射通量和热辐射通量;同时还测量了网上的风速,以及网和空气的温度。采用不同孔隙率、颜色和纹理结构的网进行研究。网的短波和长波辐射特性是在先前的研究中预先确定的。Re和Gr数被确定并用于表征每个网上的对流机制。结果表明,在白天和夜间的大部分时间,强迫对流和混合对流是网上空的主要对流模式。网上对流的性质主要取决于风速、网内空气温差和网的纹理形状,而不是其颜色和孔隙度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing the convective heat exchange with plastic shading nets under natural arid conditions
Plastic nets are extensively used for shading purposes in arid regions such as in the Arabian Peninsula. Quantifying the convection exchange with shading net and understanding the mechanisms (free, mixed and forced) of convection are essential for analyzing energy exchange with shading nets. Unlike solar and thermal radiation, the convective energy, convective heat transfer coefficient and the nature of convection have never been theoretically estimated or experimentally measured for plastic nets under arid conditions. In this study, the convected heat exchanges with different plastic nets were quantified based on an energy balance applied to the nets under outdoor natural conditions. Therefore, each net was tacked onto a wooden frame, fixed horizontally at 1.5-m height over the floor. The downward and upward solar and thermal radiation fluxes were measured below and above each net on sunny days; also the wind speed over the net, and the net and air temperatures were measured, simultaneously. Nets with different porosities, colors and texture structures were used for the study. The short and long wave’s radiative properties of the nets were pre-determined in previous studies to be used. Re and Gr numbers were determined and used to characterize the convection mechanism over each net. The results showed that forced and mixed convection are the dominant modes existing over the nets during most of the day and night times. The nature of convection over nets depends mainly on the wind speed, net-air temperature difference and texture shape of the net rather than its color and its porosity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy Technology and Policy
International Journal of Energy Technology and Policy Social Sciences-Geography, Planning and Development
CiteScore
1.50
自引率
0.00%
发文量
16
期刊介绍: The IJETP is a vehicle to provide a refereed and authoritative source of information in the field of energy technology and policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信