某些四次曲线上的发生器和积分点

Pub Date : 2019-12-11 DOI:10.3336/gm.54.2.04
Y. Fujita, T. Nara
{"title":"某些四次曲线上的发生器和积分点","authors":"Y. Fujita, T. Nara","doi":"10.3336/gm.54.2.04","DOIUrl":null,"url":null,"abstract":"In this paper, we study integral points and generators on quartic curves of the forms u2±v4 = m for a nonzero integer m. The main results assert that certain integral points on the curves can be extended to bases for the Mordell-Weil groups of the elliptic curves attached to the quartic curves in the cases where the Mordell-Weil ranks are at most two. As corollaries, we explicitly describe the integral points on the quartic curves in each case where the ranks are one and two.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generators and integral points on certain quartic curves\",\"authors\":\"Y. Fujita, T. Nara\",\"doi\":\"10.3336/gm.54.2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study integral points and generators on quartic curves of the forms u2±v4 = m for a nonzero integer m. The main results assert that certain integral points on the curves can be extended to bases for the Mordell-Weil groups of the elliptic curves attached to the quartic curves in the cases where the Mordell-Weil ranks are at most two. As corollaries, we explicitly describe the integral points on the quartic curves in each case where the ranks are one and two.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.54.2.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.54.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非零整数m的形式为u2±v4 = m的四次曲线上的积分点和生成点。主要结果表明,在莫德尔-魏尔阶不超过2的情况下,曲线上的某些积分点可以推广为椭圆曲线的莫德尔-魏尔群的基。作为推论,我们明确地描述了在秩为1和2的每种情况下,四次曲线上的积分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generators and integral points on certain quartic curves
In this paper, we study integral points and generators on quartic curves of the forms u2±v4 = m for a nonzero integer m. The main results assert that certain integral points on the curves can be extended to bases for the Mordell-Weil groups of the elliptic curves attached to the quartic curves in the cases where the Mordell-Weil ranks are at most two. As corollaries, we explicitly describe the integral points on the quartic curves in each case where the ranks are one and two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信