离散时间市场序列最优期望效用的收敛性

David M. Kreps, W. Schachermayer
{"title":"离散时间市场序列最优期望效用的收敛性","authors":"David M. Kreps, W. Schachermayer","doi":"10.2139/ssrn.3417898","DOIUrl":null,"url":null,"abstract":"We examine Kreps’ (2019) conjecture that optimal expected utility in the classic Black–Scholes–Merton (BSM) economy is the limit of optimal expected utility for a sequence of discrete-time economies that “approach” the BSM economy in a natural sense: The nth discrete-time economy is generated by a scaled n-step random walk based on an unscaled random variable ζ with mean zero, variance one, and bounded support. We confirm Kreps’ conjecture if the consumer’s utility function U has asymptotic elasticity strictly less than one, and we provide a counterexample to the conjecture for a utility function U with asymptotic elasticity equal to 1, for ζ such that Ε [ζ3]>0.","PeriodicalId":11757,"journal":{"name":"ERN: Other Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convergence of Optimal Expected Utility for a Sequence of Discrete-Time Market\",\"authors\":\"David M. Kreps, W. Schachermayer\",\"doi\":\"10.2139/ssrn.3417898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine Kreps’ (2019) conjecture that optimal expected utility in the classic Black–Scholes–Merton (BSM) economy is the limit of optimal expected utility for a sequence of discrete-time economies that “approach” the BSM economy in a natural sense: The nth discrete-time economy is generated by a scaled n-step random walk based on an unscaled random variable ζ with mean zero, variance one, and bounded support. We confirm Kreps’ conjecture if the consumer’s utility function U has asymptotic elasticity strictly less than one, and we provide a counterexample to the conjecture for a utility function U with asymptotic elasticity equal to 1, for ζ such that Ε [ζ3]>0.\",\"PeriodicalId\":11757,\"journal\":{\"name\":\"ERN: Other Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3417898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3417898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们检验了Kreps(2019)的猜想,即经典Black-Scholes-Merton (BSM)经济中的最优期望效用是在自然意义上“接近”BSM经济的一系列离散时间经济的最优期望效用的极限:第n个离散时间经济是由基于均值为零、方差为1和有界支持的非缩放随机变量ζ的缩放n步随机漫步产生的。我们证实了Kreps的猜想,如果消费者的效用函数U具有严格小于1的渐近弹性,并且我们提供了一个反例,对于具有渐近弹性等于1的效用函数U的猜想,对于ζ使得Ε [ζ3]>0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of Optimal Expected Utility for a Sequence of Discrete-Time Market
We examine Kreps’ (2019) conjecture that optimal expected utility in the classic Black–Scholes–Merton (BSM) economy is the limit of optimal expected utility for a sequence of discrete-time economies that “approach” the BSM economy in a natural sense: The nth discrete-time economy is generated by a scaled n-step random walk based on an unscaled random variable ζ with mean zero, variance one, and bounded support. We confirm Kreps’ conjecture if the consumer’s utility function U has asymptotic elasticity strictly less than one, and we provide a counterexample to the conjecture for a utility function U with asymptotic elasticity equal to 1, for ζ such that Ε [ζ3]>0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信