{"title":"铁(II)和锌(II)的1-丙基四唑配合物的固体核磁共振。1.1H自旋-晶格弛豫时间","authors":"Mónika Bokor , Tamás Marek , Kálmán Tompa","doi":"10.1006/jmra.1996.0191","DOIUrl":null,"url":null,"abstract":"<div><p>Proton spin–lattice relaxation times were measured between 2.2 K and room temperature in [Zn(ptz)<sub>6</sub>](BF<sub>4</sub>)<sub>2</sub>(ptz = 1-<em>n</em>-propyl-1<em>H</em>-tetrazole) and in the spin-crossover complex [Fe(ptz)<sub>6</sub>](BF<sub>4</sub>)<sub>2</sub>. Three different types of intramolecular motion of the propyl group are suggested in [Zn(ptz)<sub>6</sub>](BF<sub>4</sub>)<sub>2</sub>, namely tunneling and classical rotation of methyl groups and rotation of methylene groups. Correlation times and activation energies are calculated for tunneling rotation of the CH<sub>3</sub>group and for the classical (hindered) rotations of –CH<sub>3</sub>and –CH<sub>2</sub>–CH<sub>3</sub>as reorientations over a three-well asymmetrical potential. In [Fe(ptz)<sub>6</sub>](BF<sub>4</sub>)<sub>2</sub>the mechanism for the paramagnetic relaxation is found to be of the rapid-diffusion type according to the theory of Lowe and Tse, and the intramolecular motions are suggested to be the same as for the zinc complex.</p></div>","PeriodicalId":16165,"journal":{"name":"Journal of Magnetic Resonance, Series A","volume":"122 2","pages":"Pages 157-164"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/jmra.1996.0191","citationCount":"9","resultStr":"{\"title\":\"Solid-State NMR of 1-Propyltetrazole Complexes of Iron(II) and Zinc(II). 1.1H Spin–Lattice Relaxation Time\",\"authors\":\"Mónika Bokor , Tamás Marek , Kálmán Tompa\",\"doi\":\"10.1006/jmra.1996.0191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proton spin–lattice relaxation times were measured between 2.2 K and room temperature in [Zn(ptz)<sub>6</sub>](BF<sub>4</sub>)<sub>2</sub>(ptz = 1-<em>n</em>-propyl-1<em>H</em>-tetrazole) and in the spin-crossover complex [Fe(ptz)<sub>6</sub>](BF<sub>4</sub>)<sub>2</sub>. Three different types of intramolecular motion of the propyl group are suggested in [Zn(ptz)<sub>6</sub>](BF<sub>4</sub>)<sub>2</sub>, namely tunneling and classical rotation of methyl groups and rotation of methylene groups. Correlation times and activation energies are calculated for tunneling rotation of the CH<sub>3</sub>group and for the classical (hindered) rotations of –CH<sub>3</sub>and –CH<sub>2</sub>–CH<sub>3</sub>as reorientations over a three-well asymmetrical potential. In [Fe(ptz)<sub>6</sub>](BF<sub>4</sub>)<sub>2</sub>the mechanism for the paramagnetic relaxation is found to be of the rapid-diffusion type according to the theory of Lowe and Tse, and the intramolecular motions are suggested to be the same as for the zinc complex.</p></div>\",\"PeriodicalId\":16165,\"journal\":{\"name\":\"Journal of Magnetic Resonance, Series A\",\"volume\":\"122 2\",\"pages\":\"Pages 157-164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/jmra.1996.0191\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance, Series A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1064185896901916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance, Series A","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1064185896901916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solid-State NMR of 1-Propyltetrazole Complexes of Iron(II) and Zinc(II). 1.1H Spin–Lattice Relaxation Time
Proton spin–lattice relaxation times were measured between 2.2 K and room temperature in [Zn(ptz)6](BF4)2(ptz = 1-n-propyl-1H-tetrazole) and in the spin-crossover complex [Fe(ptz)6](BF4)2. Three different types of intramolecular motion of the propyl group are suggested in [Zn(ptz)6](BF4)2, namely tunneling and classical rotation of methyl groups and rotation of methylene groups. Correlation times and activation energies are calculated for tunneling rotation of the CH3group and for the classical (hindered) rotations of –CH3and –CH2–CH3as reorientations over a three-well asymmetrical potential. In [Fe(ptz)6](BF4)2the mechanism for the paramagnetic relaxation is found to be of the rapid-diffusion type according to the theory of Lowe and Tse, and the intramolecular motions are suggested to be the same as for the zinc complex.