{"title":"带反激逆变器的双端口DC-DC转换器,用于农村照明应用","authors":"Parvathi Nair, K. Deepa","doi":"10.1109/TAPENERGY.2015.7229626","DOIUrl":null,"url":null,"abstract":"A two port DC-DC converter, combined with a modified flyback inverter, is presented in this paper. The output of the inverter is 230V sinusoidal voltage at 50Hz used for supplying rural lighting applications. Combination (solar and battery) of the energy sources along with a voltage doubler forms the two input port of the DC-DC converter for solar-battery hybrid systems. To obtain a low frequency output voltage for the load modified flyback inverter structure is utilized. A control algorithm implemented to supply the load using PV and battery sources either independently or simultaneously for maintaining the constant output voltage is also presented. This work focuses on simulation studies of the same to verify the converter working using PSIM software.","PeriodicalId":6552,"journal":{"name":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","volume":"18 1","pages":"249-253"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Two-port DC-DC converter with flyback inverter for rural lighting applications\",\"authors\":\"Parvathi Nair, K. Deepa\",\"doi\":\"10.1109/TAPENERGY.2015.7229626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two port DC-DC converter, combined with a modified flyback inverter, is presented in this paper. The output of the inverter is 230V sinusoidal voltage at 50Hz used for supplying rural lighting applications. Combination (solar and battery) of the energy sources along with a voltage doubler forms the two input port of the DC-DC converter for solar-battery hybrid systems. To obtain a low frequency output voltage for the load modified flyback inverter structure is utilized. A control algorithm implemented to supply the load using PV and battery sources either independently or simultaneously for maintaining the constant output voltage is also presented. This work focuses on simulation studies of the same to verify the converter working using PSIM software.\",\"PeriodicalId\":6552,\"journal\":{\"name\":\"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)\",\"volume\":\"18 1\",\"pages\":\"249-253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAPENERGY.2015.7229626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAPENERGY.2015.7229626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-port DC-DC converter with flyback inverter for rural lighting applications
A two port DC-DC converter, combined with a modified flyback inverter, is presented in this paper. The output of the inverter is 230V sinusoidal voltage at 50Hz used for supplying rural lighting applications. Combination (solar and battery) of the energy sources along with a voltage doubler forms the two input port of the DC-DC converter for solar-battery hybrid systems. To obtain a low frequency output voltage for the load modified flyback inverter structure is utilized. A control algorithm implemented to supply the load using PV and battery sources either independently or simultaneously for maintaining the constant output voltage is also presented. This work focuses on simulation studies of the same to verify the converter working using PSIM software.