应用遗传算法和模拟退火算法求解组合优化问题

M. Chakraborty, Uday K. Chakraborty
{"title":"应用遗传算法和模拟退火算法求解组合优化问题","authors":"M. Chakraborty, Uday K. Chakraborty","doi":"10.1109/ICICS.1997.652115","DOIUrl":null,"url":null,"abstract":"This paper applies the genetic algorithm and simulated annealing to the problem of optimal link enhancement, which is an NP-complete combinatorial optimization problem in the topological expansion of computer communication networks. Experimental results show that simulated annealing outperforms the genetic algorithm on this problem.","PeriodicalId":71361,"journal":{"name":"信息通信技术","volume":"6 1","pages":"929-933 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Applying genetic algorithm and simulated annealing to a combinatorial optimization problem\",\"authors\":\"M. Chakraborty, Uday K. Chakraborty\",\"doi\":\"10.1109/ICICS.1997.652115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper applies the genetic algorithm and simulated annealing to the problem of optimal link enhancement, which is an NP-complete combinatorial optimization problem in the topological expansion of computer communication networks. Experimental results show that simulated annealing outperforms the genetic algorithm on this problem.\",\"PeriodicalId\":71361,\"journal\":{\"name\":\"信息通信技术\",\"volume\":\"6 1\",\"pages\":\"929-933 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息通信技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.1997.652115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息通信技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICICS.1997.652115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文将遗传算法和模拟退火方法应用于计算机通信网络拓扑展开中的一个np完全组合优化问题——最优链路增强问题。实验结果表明,模拟退火算法在该问题上优于遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying genetic algorithm and simulated annealing to a combinatorial optimization problem
This paper applies the genetic algorithm and simulated annealing to the problem of optimal link enhancement, which is an NP-complete combinatorial optimization problem in the topological expansion of computer communication networks. Experimental results show that simulated annealing outperforms the genetic algorithm on this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1369
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信