基于二阶近似诺伊曼级数展开的结构损伤识别

Q3 Engineering
S. S. Kourehli
{"title":"基于二阶近似诺伊曼级数展开的结构损伤识别","authors":"S. S. Kourehli","doi":"10.22075/JRCE.2018.13348.1242","DOIUrl":null,"url":null,"abstract":"In this paper, a new method proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). One of the main challenges in structural damage identification problems is the limitation in the number of used sensors. To address this issue, an effective model reduction method has been proposed. To condense mass and stiffness matrices, the second-order approximation of Neumann series expansion (NSEMR-II) has been used. Mode shapes and frequencies of damaged structures and corresponding generated damage states used as input and output to train extreme learning machine, respectively. To show the effectiveness of presented method, three different examples consists of a truss structure, irregular frame and shear frame have been studied. The obtained results show the ability of the proposed approach in identifying and estimating different damage cases using limited numbers of installed sensors and noisy modal data.","PeriodicalId":52415,"journal":{"name":"Journal of Rehabilitation in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Damage identification of structures using second-order approximation of Neumann series expansion\",\"authors\":\"S. S. Kourehli\",\"doi\":\"10.22075/JRCE.2018.13348.1242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). One of the main challenges in structural damage identification problems is the limitation in the number of used sensors. To address this issue, an effective model reduction method has been proposed. To condense mass and stiffness matrices, the second-order approximation of Neumann series expansion (NSEMR-II) has been used. Mode shapes and frequencies of damaged structures and corresponding generated damage states used as input and output to train extreme learning machine, respectively. To show the effectiveness of presented method, three different examples consists of a truss structure, irregular frame and shear frame have been studied. The obtained results show the ability of the proposed approach in identifying and estimating different damage cases using limited numbers of installed sensors and noisy modal data.\",\"PeriodicalId\":52415,\"journal\":{\"name\":\"Journal of Rehabilitation in Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rehabilitation in Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/JRCE.2018.13348.1242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/JRCE.2018.13348.1242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于极限学习机(ELM)的基于有限传感器的结构损伤检测方法。结构损伤识别问题的主要挑战之一是使用传感器数量的限制。为了解决这一问题,提出了一种有效的模型约简方法。为了压缩质量和刚度矩阵,采用了二阶近似的诺伊曼级数展开(NSEMR-II)。将损伤结构的模态振型和频率以及相应产生的损伤状态分别作为输入和输出来训练极限学习机。为验证所提方法的有效性,对桁架结构、不规则框架和剪力框架三种不同结构进行了算例分析。结果表明,该方法能够在有限数量的传感器和噪声模态数据下识别和估计不同的损伤情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Damage identification of structures using second-order approximation of Neumann series expansion
In this paper, a new method proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). One of the main challenges in structural damage identification problems is the limitation in the number of used sensors. To address this issue, an effective model reduction method has been proposed. To condense mass and stiffness matrices, the second-order approximation of Neumann series expansion (NSEMR-II) has been used. Mode shapes and frequencies of damaged structures and corresponding generated damage states used as input and output to train extreme learning machine, respectively. To show the effectiveness of presented method, three different examples consists of a truss structure, irregular frame and shear frame have been studied. The obtained results show the ability of the proposed approach in identifying and estimating different damage cases using limited numbers of installed sensors and noisy modal data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rehabilitation in Civil Engineering
Journal of Rehabilitation in Civil Engineering Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信