Gorenstein FP∞-内射模与w- noether环

Pub Date : 2022-12-01 DOI:10.1142/s1005386722000499
Shiqi Xing, Xiaoqiang Luo, Kui Hu
{"title":"Gorenstein FP∞-内射模与w- noether环","authors":"Shiqi Xing, Xiaoqiang Luo, Kui Hu","doi":"10.1142/s1005386722000499","DOIUrl":null,"url":null,"abstract":"We study some homological properties of Gorenstein [Formula: see text]-injective modules, and we prove (1) a ring [Formula: see text]is not necessarily coherent if every Gorenstein [Formula: see text]-injective [Formula: see text]-module is injective, and (2) a ring [Formula: see text] is not necessarily coherent if every Gorenstein injective [Formula: see text]-module is injective. In addition, we characterize [Formula: see text]-Noetherian rings in terms of Gorenstein [Formula: see text]-injective modules, and we prove that a ring [Formula: see text] is [Formula: see text]-Noetherian if and only if every GV-torsion-free FP-injective [Formula: see text]-module is Gorenstein [Formula: see text]-injective, if and only if any direct sum of GV-torsion-free FP-injective [Formula: see text]-modules is Gorenstein [Formula: see text]-injective.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gorenstein FP∞-Injective Modules and w-Noetherian Rings\",\"authors\":\"Shiqi Xing, Xiaoqiang Luo, Kui Hu\",\"doi\":\"10.1142/s1005386722000499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study some homological properties of Gorenstein [Formula: see text]-injective modules, and we prove (1) a ring [Formula: see text]is not necessarily coherent if every Gorenstein [Formula: see text]-injective [Formula: see text]-module is injective, and (2) a ring [Formula: see text] is not necessarily coherent if every Gorenstein injective [Formula: see text]-module is injective. In addition, we characterize [Formula: see text]-Noetherian rings in terms of Gorenstein [Formula: see text]-injective modules, and we prove that a ring [Formula: see text] is [Formula: see text]-Noetherian if and only if every GV-torsion-free FP-injective [Formula: see text]-module is Gorenstein [Formula: see text]-injective, if and only if any direct sum of GV-torsion-free FP-injective [Formula: see text]-modules is Gorenstein [Formula: see text]-injective.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了Gorenstein[公式:见文]-内射模的一些同调性质,证明了(1)如果每个Gorenstein[公式:见文]-内射模都是内射模,则环[公式:见文]不一定是内射模;(2)如果每个Gorenstein[公式:见文]-内射模都是内射模,则环[公式:见文]不一定是内射模。此外,我们用Gorenstein[公式:见文]-内射模来刻画[公式:见文]-Noetherian环,并证明一个环[公式:见文]是[公式:见文]-Noetherian当且仅当每个gv -无扭转fp -内射[公式:见文]-模都是Gorenstein[公式:见文]-内射,当且仅当gv -无扭转fp -内射[公式:见文]-模的任何直接和都是Gorenstein[公式:见文]-内射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Gorenstein FP∞-Injective Modules and w-Noetherian Rings
We study some homological properties of Gorenstein [Formula: see text]-injective modules, and we prove (1) a ring [Formula: see text]is not necessarily coherent if every Gorenstein [Formula: see text]-injective [Formula: see text]-module is injective, and (2) a ring [Formula: see text] is not necessarily coherent if every Gorenstein injective [Formula: see text]-module is injective. In addition, we characterize [Formula: see text]-Noetherian rings in terms of Gorenstein [Formula: see text]-injective modules, and we prove that a ring [Formula: see text] is [Formula: see text]-Noetherian if and only if every GV-torsion-free FP-injective [Formula: see text]-module is Gorenstein [Formula: see text]-injective, if and only if any direct sum of GV-torsion-free FP-injective [Formula: see text]-modules is Gorenstein [Formula: see text]-injective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信