{"title":"Gorenstein FP∞-内射模与w- noether环","authors":"Shiqi Xing, Xiaoqiang Luo, Kui Hu","doi":"10.1142/s1005386722000499","DOIUrl":null,"url":null,"abstract":"We study some homological properties of Gorenstein [Formula: see text]-injective modules, and we prove (1) a ring [Formula: see text]is not necessarily coherent if every Gorenstein [Formula: see text]-injective [Formula: see text]-module is injective, and (2) a ring [Formula: see text] is not necessarily coherent if every Gorenstein injective [Formula: see text]-module is injective. In addition, we characterize [Formula: see text]-Noetherian rings in terms of Gorenstein [Formula: see text]-injective modules, and we prove that a ring [Formula: see text] is [Formula: see text]-Noetherian if and only if every GV-torsion-free FP-injective [Formula: see text]-module is Gorenstein [Formula: see text]-injective, if and only if any direct sum of GV-torsion-free FP-injective [Formula: see text]-modules is Gorenstein [Formula: see text]-injective.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gorenstein FP∞-Injective Modules and w-Noetherian Rings\",\"authors\":\"Shiqi Xing, Xiaoqiang Luo, Kui Hu\",\"doi\":\"10.1142/s1005386722000499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study some homological properties of Gorenstein [Formula: see text]-injective modules, and we prove (1) a ring [Formula: see text]is not necessarily coherent if every Gorenstein [Formula: see text]-injective [Formula: see text]-module is injective, and (2) a ring [Formula: see text] is not necessarily coherent if every Gorenstein injective [Formula: see text]-module is injective. In addition, we characterize [Formula: see text]-Noetherian rings in terms of Gorenstein [Formula: see text]-injective modules, and we prove that a ring [Formula: see text] is [Formula: see text]-Noetherian if and only if every GV-torsion-free FP-injective [Formula: see text]-module is Gorenstein [Formula: see text]-injective, if and only if any direct sum of GV-torsion-free FP-injective [Formula: see text]-modules is Gorenstein [Formula: see text]-injective.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gorenstein FP∞-Injective Modules and w-Noetherian Rings
We study some homological properties of Gorenstein [Formula: see text]-injective modules, and we prove (1) a ring [Formula: see text]is not necessarily coherent if every Gorenstein [Formula: see text]-injective [Formula: see text]-module is injective, and (2) a ring [Formula: see text] is not necessarily coherent if every Gorenstein injective [Formula: see text]-module is injective. In addition, we characterize [Formula: see text]-Noetherian rings in terms of Gorenstein [Formula: see text]-injective modules, and we prove that a ring [Formula: see text] is [Formula: see text]-Noetherian if and only if every GV-torsion-free FP-injective [Formula: see text]-module is Gorenstein [Formula: see text]-injective, if and only if any direct sum of GV-torsion-free FP-injective [Formula: see text]-modules is Gorenstein [Formula: see text]-injective.