{"title":"使用对称导数的前倒凸函数的最优性条件","authors":"Sachin Rastogi, Akhlad Iqbal, Sanjeev Rajan","doi":"10.37190/ord220406","DOIUrl":null,"url":null,"abstract":"As a generalization of convex functions and derivatives, in this paper, the authors study the concept of a symmetric derivative for preinvex functions. Using symmetrical differentiation, they discuss an important characterization for preinvex functions and define symmetrically pseudo-invex and symmetrically quasi-invex functions. They also generalize the first derivative theorem for symmetrically differentiable functions and establish some relationships between symmetrically pseudo-invex and symmetrically quasi-invex functions. They also discuss the Fritz John type optimality conditions for preinvex, symmetrically pseudo-invex and symmetrically quasi-invex functions using symmetrical differentiability.","PeriodicalId":43244,"journal":{"name":"Operations Research and Decisions","volume":"21 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality conditions for preinvex functions using symmetric derivative\",\"authors\":\"Sachin Rastogi, Akhlad Iqbal, Sanjeev Rajan\",\"doi\":\"10.37190/ord220406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a generalization of convex functions and derivatives, in this paper, the authors study the concept of a symmetric derivative for preinvex functions. Using symmetrical differentiation, they discuss an important characterization for preinvex functions and define symmetrically pseudo-invex and symmetrically quasi-invex functions. They also generalize the first derivative theorem for symmetrically differentiable functions and establish some relationships between symmetrically pseudo-invex and symmetrically quasi-invex functions. They also discuss the Fritz John type optimality conditions for preinvex, symmetrically pseudo-invex and symmetrically quasi-invex functions using symmetrical differentiability.\",\"PeriodicalId\":43244,\"journal\":{\"name\":\"Operations Research and Decisions\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research and Decisions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37190/ord220406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research and Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ord220406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Optimality conditions for preinvex functions using symmetric derivative
As a generalization of convex functions and derivatives, in this paper, the authors study the concept of a symmetric derivative for preinvex functions. Using symmetrical differentiation, they discuss an important characterization for preinvex functions and define symmetrically pseudo-invex and symmetrically quasi-invex functions. They also generalize the first derivative theorem for symmetrically differentiable functions and establish some relationships between symmetrically pseudo-invex and symmetrically quasi-invex functions. They also discuss the Fritz John type optimality conditions for preinvex, symmetrically pseudo-invex and symmetrically quasi-invex functions using symmetrical differentiability.