使用对称导数的前倒凸函数的最优性条件

IF 0.7 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Sachin Rastogi, Akhlad Iqbal, Sanjeev Rajan
{"title":"使用对称导数的前倒凸函数的最优性条件","authors":"Sachin Rastogi, Akhlad Iqbal, Sanjeev Rajan","doi":"10.37190/ord220406","DOIUrl":null,"url":null,"abstract":"As a generalization of convex functions and derivatives, in this paper, the authors study the concept of a symmetric derivative for preinvex functions. Using symmetrical differentiation, they discuss an important characterization for preinvex functions and define symmetrically pseudo-invex and symmetrically quasi-invex functions. They also generalize the first derivative theorem for symmetrically differentiable functions and establish some relationships between symmetrically pseudo-invex and symmetrically quasi-invex functions. They also discuss the Fritz John type optimality conditions for preinvex, symmetrically pseudo-invex and symmetrically quasi-invex functions using symmetrical differentiability.","PeriodicalId":43244,"journal":{"name":"Operations Research and Decisions","volume":"21 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality conditions for preinvex functions using symmetric derivative\",\"authors\":\"Sachin Rastogi, Akhlad Iqbal, Sanjeev Rajan\",\"doi\":\"10.37190/ord220406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a generalization of convex functions and derivatives, in this paper, the authors study the concept of a symmetric derivative for preinvex functions. Using symmetrical differentiation, they discuss an important characterization for preinvex functions and define symmetrically pseudo-invex and symmetrically quasi-invex functions. They also generalize the first derivative theorem for symmetrically differentiable functions and establish some relationships between symmetrically pseudo-invex and symmetrically quasi-invex functions. They also discuss the Fritz John type optimality conditions for preinvex, symmetrically pseudo-invex and symmetrically quasi-invex functions using symmetrical differentiability.\",\"PeriodicalId\":43244,\"journal\":{\"name\":\"Operations Research and Decisions\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research and Decisions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37190/ord220406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research and Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ord220406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

作为凸函数和导数的推广,本文研究了前凸函数的对称导数的概念。利用对称微分,讨论了前凸函数的一个重要性质,并定义了对称伪凸函数和对称拟凸函数。推广了对称可微函数的一阶导数定理,建立了对称伪凸函数与对称拟凸函数之间的关系。利用对称可微性讨论了预凸函数、对称拟凸函数和对称拟凸函数的Fritz John型最优性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimality conditions for preinvex functions using symmetric derivative
As a generalization of convex functions and derivatives, in this paper, the authors study the concept of a symmetric derivative for preinvex functions. Using symmetrical differentiation, they discuss an important characterization for preinvex functions and define symmetrically pseudo-invex and symmetrically quasi-invex functions. They also generalize the first derivative theorem for symmetrically differentiable functions and establish some relationships between symmetrically pseudo-invex and symmetrically quasi-invex functions. They also discuss the Fritz John type optimality conditions for preinvex, symmetrically pseudo-invex and symmetrically quasi-invex functions using symmetrical differentiability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research and Decisions
Operations Research and Decisions OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
1.00
自引率
25.00%
发文量
16
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信