John E Remmers , Cory Torgerson , Michael Harris , Steven F Perry , Konstantinon Vasilakos , Richard J.A Wilson
{"title":"中枢呼吸化学接受的进化:一个古老故事的新转折","authors":"John E Remmers , Cory Torgerson , Michael Harris , Steven F Perry , Konstantinon Vasilakos , Richard J.A Wilson","doi":"10.1016/S0034-5687(01)00291-2","DOIUrl":null,"url":null,"abstract":"<div><p>Evolution of central respiratory chemosensitivity has been linked traditionally to the need for carbon dioxide regulation that accompanied the evolution of air breathing in terresterial animals. We examined the validity of this linkage by investigating the possibility of central chemoreception in air breathing fish that diverged from the amphibian lineage long before the appearance of terrestriality. We showed that the isolated brainstem preparation of the long nose gar (<em>Lepisosteus osseus</em>) produces a putative motor pattern for lung ventilation, which is responsive to CO<sub>2</sub>. These findings, together with more inferential evidence, suggest an association between air breathing and central chemosensitivity in aquatic animals that spans the major branches in vertebrate phylogeny. Furthermore, developmental observations in tadpoles suggest that the neural substrates for central chemoreception exist in proximity to that for rhythm generation. We postulate that a primitive ancestral CPG, sensitive to CO<sub>2</sub> is conserved and is evidenced in the intrinsic coupling of respiratory CPG and central chemoreception in modern tetrapods.</p></div>","PeriodicalId":20976,"journal":{"name":"Respiration physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0034-5687(01)00291-2","citationCount":"31","resultStr":"{\"title\":\"Evolution of central respiratory chemoreception: a new twist on an old story\",\"authors\":\"John E Remmers , Cory Torgerson , Michael Harris , Steven F Perry , Konstantinon Vasilakos , Richard J.A Wilson\",\"doi\":\"10.1016/S0034-5687(01)00291-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Evolution of central respiratory chemosensitivity has been linked traditionally to the need for carbon dioxide regulation that accompanied the evolution of air breathing in terresterial animals. We examined the validity of this linkage by investigating the possibility of central chemoreception in air breathing fish that diverged from the amphibian lineage long before the appearance of terrestriality. We showed that the isolated brainstem preparation of the long nose gar (<em>Lepisosteus osseus</em>) produces a putative motor pattern for lung ventilation, which is responsive to CO<sub>2</sub>. These findings, together with more inferential evidence, suggest an association between air breathing and central chemosensitivity in aquatic animals that spans the major branches in vertebrate phylogeny. Furthermore, developmental observations in tadpoles suggest that the neural substrates for central chemoreception exist in proximity to that for rhythm generation. We postulate that a primitive ancestral CPG, sensitive to CO<sub>2</sub> is conserved and is evidenced in the intrinsic coupling of respiratory CPG and central chemoreception in modern tetrapods.</p></div>\",\"PeriodicalId\":20976,\"journal\":{\"name\":\"Respiration physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0034-5687(01)00291-2\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiration physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034568701002912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiration physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034568701002912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolution of central respiratory chemoreception: a new twist on an old story
Evolution of central respiratory chemosensitivity has been linked traditionally to the need for carbon dioxide regulation that accompanied the evolution of air breathing in terresterial animals. We examined the validity of this linkage by investigating the possibility of central chemoreception in air breathing fish that diverged from the amphibian lineage long before the appearance of terrestriality. We showed that the isolated brainstem preparation of the long nose gar (Lepisosteus osseus) produces a putative motor pattern for lung ventilation, which is responsive to CO2. These findings, together with more inferential evidence, suggest an association between air breathing and central chemosensitivity in aquatic animals that spans the major branches in vertebrate phylogeny. Furthermore, developmental observations in tadpoles suggest that the neural substrates for central chemoreception exist in proximity to that for rhythm generation. We postulate that a primitive ancestral CPG, sensitive to CO2 is conserved and is evidenced in the intrinsic coupling of respiratory CPG and central chemoreception in modern tetrapods.