参数形状集合的检索

Adriana Schulz, Ariel Shamir, Ilya Baran, D. Levin, Pitchaya Sitthi-amorn, W. Matusik
{"title":"参数形状集合的检索","authors":"Adriana Schulz, Ariel Shamir, Ilya Baran, D. Levin, Pitchaya Sitthi-amorn, W. Matusik","doi":"10.1145/3072959.3126792","DOIUrl":null,"url":null,"abstract":"While collections of parametric shapes are growing in size and use, little progress has been made on the fundamental problem of shape-based matching and retrieval for parametric shapes in a collection. The search space for such collections is both discrete (number of shapes) and continuous (parameter values). In this work, we propose representing this space using descriptors that have shown to be effective for single shape retrieval. While single shapes can be represented as points in a descriptor space, parametric shapes are mapped into larger continuous regions. For smooth descriptors, we can assume that these regions are bounded low-dimensional manifolds where the dimensionality is given by the number of shape parameters. We propose representing these manifolds with a set of primitives, namely, points and bounded tangent spaces. Our algorithm describes how to define these primitives and how to use them to construct a manifold approximation that allows accurate and fast retrieval. We perform an analysis based on curvature, boundary evaluation, and the allowed approximation error to select between primitive types. We show how to compute decision variables with no need for empirical parameter adjustments and discuss theoretical guarantees on retrieval accuracy. We validate our approach with experiments that use different types of descriptors on a collection of shapes from multiple categories.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Retrieval on parametric shape collections\",\"authors\":\"Adriana Schulz, Ariel Shamir, Ilya Baran, D. Levin, Pitchaya Sitthi-amorn, W. Matusik\",\"doi\":\"10.1145/3072959.3126792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While collections of parametric shapes are growing in size and use, little progress has been made on the fundamental problem of shape-based matching and retrieval for parametric shapes in a collection. The search space for such collections is both discrete (number of shapes) and continuous (parameter values). In this work, we propose representing this space using descriptors that have shown to be effective for single shape retrieval. While single shapes can be represented as points in a descriptor space, parametric shapes are mapped into larger continuous regions. For smooth descriptors, we can assume that these regions are bounded low-dimensional manifolds where the dimensionality is given by the number of shape parameters. We propose representing these manifolds with a set of primitives, namely, points and bounded tangent spaces. Our algorithm describes how to define these primitives and how to use them to construct a manifold approximation that allows accurate and fast retrieval. We perform an analysis based on curvature, boundary evaluation, and the allowed approximation error to select between primitive types. We show how to compute decision variables with no need for empirical parameter adjustments and discuss theoretical guarantees on retrieval accuracy. We validate our approach with experiments that use different types of descriptors on a collection of shapes from multiple categories.\",\"PeriodicalId\":7121,\"journal\":{\"name\":\"ACM Trans. Graph.\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Graph.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3072959.3126792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3072959.3126792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

虽然参数形状集合的规模和使用都在不断增长,但在基于形状的匹配和集合中参数形状的检索的基本问题上取得的进展很少。这种集合的搜索空间是离散的(形状的数量)和连续的(参数值)。在这项工作中,我们建议使用描述符来表示该空间,这些描述符已被证明对单个形状检索是有效的。虽然单个形状可以表示为描述符空间中的点,但参数形状被映射到更大的连续区域。对于光滑描述子,我们可以假设这些区域是有界的低维流形,其维数由形状参数的数量给出。我们建议用一组原语来表示这些流形,即点和有界切空间。我们的算法描述了如何定义这些原语,以及如何使用它们来构建允许准确和快速检索的流形近似。我们根据曲率、边界评估和允许的近似误差进行分析,以便在基本类型之间进行选择。我们展示了如何在不需要经验参数调整的情况下计算决策变量,并讨论了检索精度的理论保证。我们通过实验对来自多个类别的形状集合使用不同类型的描述符来验证我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrieval on parametric shape collections
While collections of parametric shapes are growing in size and use, little progress has been made on the fundamental problem of shape-based matching and retrieval for parametric shapes in a collection. The search space for such collections is both discrete (number of shapes) and continuous (parameter values). In this work, we propose representing this space using descriptors that have shown to be effective for single shape retrieval. While single shapes can be represented as points in a descriptor space, parametric shapes are mapped into larger continuous regions. For smooth descriptors, we can assume that these regions are bounded low-dimensional manifolds where the dimensionality is given by the number of shape parameters. We propose representing these manifolds with a set of primitives, namely, points and bounded tangent spaces. Our algorithm describes how to define these primitives and how to use them to construct a manifold approximation that allows accurate and fast retrieval. We perform an analysis based on curvature, boundary evaluation, and the allowed approximation error to select between primitive types. We show how to compute decision variables with no need for empirical parameter adjustments and discuss theoretical guarantees on retrieval accuracy. We validate our approach with experiments that use different types of descriptors on a collection of shapes from multiple categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信