基于Kano模型的旅游服务顾客满意度分析

Kailin Zhou, Zhong Yao
{"title":"基于Kano模型的旅游服务顾客满意度分析","authors":"Kailin Zhou, Zhong Yao","doi":"10.3390/systems11070345","DOIUrl":null,"url":null,"abstract":"Understanding customer needs is of great significance to enhance service quality and competitive advantage. However, for the tourism industry, it is still unclear how to mine service improvement strategies from tourist-generated online reviews. This paper aims to develop a data-driven approach to conduct a fine-grained dimension analysis of customer satisfaction with tourism services. First, this paper uses Latent Dirichlet Allocation to explore the key dimensions of tourist satisfaction from online reviews. Next, based on the Chinese sentiment dictionary, tourists’ emotional attitudes towards each service dimension can be identified. Then, the backpropagation neural network is used to measure the complex relationship between tourists’ sentiment orientations towards different dimensions and their satisfaction. Finally, according to the improved Kano model, multi-dimensional attribute classification is realized to support the strategic analysis of tourism service quality improvement. The proposed method is empirically verified through a real tourism review dataset. The results exhibit the theoretical and practical implications of our method.","PeriodicalId":52858,"journal":{"name":"syst mt`lyh","volume":"112 1","pages":"345"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Customer Satisfaction in Tourism Services Based on the Kano Model\",\"authors\":\"Kailin Zhou, Zhong Yao\",\"doi\":\"10.3390/systems11070345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding customer needs is of great significance to enhance service quality and competitive advantage. However, for the tourism industry, it is still unclear how to mine service improvement strategies from tourist-generated online reviews. This paper aims to develop a data-driven approach to conduct a fine-grained dimension analysis of customer satisfaction with tourism services. First, this paper uses Latent Dirichlet Allocation to explore the key dimensions of tourist satisfaction from online reviews. Next, based on the Chinese sentiment dictionary, tourists’ emotional attitudes towards each service dimension can be identified. Then, the backpropagation neural network is used to measure the complex relationship between tourists’ sentiment orientations towards different dimensions and their satisfaction. Finally, according to the improved Kano model, multi-dimensional attribute classification is realized to support the strategic analysis of tourism service quality improvement. The proposed method is empirically verified through a real tourism review dataset. The results exhibit the theoretical and practical implications of our method.\",\"PeriodicalId\":52858,\"journal\":{\"name\":\"syst mt`lyh\",\"volume\":\"112 1\",\"pages\":\"345\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"syst mt`lyh\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/systems11070345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"syst mt`lyh","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/systems11070345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

了解顾客需求对提高服务质量和竞争优势具有重要意义。然而,对于旅游业来说,如何从游客产生的在线评论中挖掘服务改进策略仍不清楚。本文旨在开发一种数据驱动的方法,对旅游服务的顾客满意度进行细粒度的维度分析。首先,本文利用潜在狄利克雷分配方法从在线评论中探索游客满意度的关键维度。其次,基于汉语情感词典,可以识别游客对各个服务维度的情感态度。然后,利用反向传播神经网络测度旅游者对不同维度的情感取向与满意度之间的复杂关系。最后,根据改进的卡诺模型,实现多维属性分类,支持旅游服务质量提升战略分析。通过一个真实的旅游评论数据集对所提出的方法进行了实证验证。结果显示了我们的方法的理论和实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Customer Satisfaction in Tourism Services Based on the Kano Model
Understanding customer needs is of great significance to enhance service quality and competitive advantage. However, for the tourism industry, it is still unclear how to mine service improvement strategies from tourist-generated online reviews. This paper aims to develop a data-driven approach to conduct a fine-grained dimension analysis of customer satisfaction with tourism services. First, this paper uses Latent Dirichlet Allocation to explore the key dimensions of tourist satisfaction from online reviews. Next, based on the Chinese sentiment dictionary, tourists’ emotional attitudes towards each service dimension can be identified. Then, the backpropagation neural network is used to measure the complex relationship between tourists’ sentiment orientations towards different dimensions and their satisfaction. Finally, according to the improved Kano model, multi-dimensional attribute classification is realized to support the strategic analysis of tourism service quality improvement. The proposed method is empirically verified through a real tourism review dataset. The results exhibit the theoretical and practical implications of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信