M. J. Idrisi, Teklehaimanot Eshetie, Tenaw Tilahun, Mitiku Kerebh
{"title":"考虑汤川势修正的R3BP中的三角均衡","authors":"M. J. Idrisi, Teklehaimanot Eshetie, Tenaw Tilahun, Mitiku Kerebh","doi":"10.1155/2022/4072418","DOIUrl":null,"url":null,"abstract":"<jats:p>We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>α</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is the coupling constant of Yukawa force to gravitational force, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>λ</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>0</mn>\n <mrow>\n <mo>,</mo>\n </mrow>\n <mrow>\n <mo>∞</mo>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is the range of Yukawa force. It is observed that as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>λ</mi>\n <mo>⟶</mo>\n <mo>∞</mo>\n </math>\n </jats:inline-formula>, the mean-motion of the primaries <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>n</mi>\n <mo>⟶</mo>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>α</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> and as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>λ</mi>\n <mo>⟶</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>n</mi>\n <mo>⟶</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>. Further, it is observed that the mean-motion is unity, i.e., <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>α</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>n</mi>\n <mo>></mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>α</mi>\n <mo>></mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>n</mi>\n <mo><</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> when <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>α</mi>\n <mo><</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>. The triangular equilibria are not affected by <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> and remain the same as in the classical case of restricted three-body problem. But, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mi>c</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>+</mo>\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0.0385209</mn>\n <mo>⋯</mo>\n </math>\n </jats:inline-formula> is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mi>c</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> either for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\">\n <mi>α</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> or <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\">\n <mi>λ</mi>\n <mo>=</mo>\n <mn>0.618034</mn>\n </math>\n </jats:inline-formula>, and the critical mass parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M24\">\n ","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"44 1","pages":"4072418:1-4072418:6"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential\",\"authors\":\"M. J. Idrisi, Teklehaimanot Eshetie, Tenaw Tilahun, Mitiku Kerebh\",\"doi\":\"10.1155/2022/4072418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>α</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>λ</mi>\\n </math>\\n </jats:inline-formula> on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>α</mi>\\n <mo>∈</mo>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is the coupling constant of Yukawa force to gravitational force, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>λ</mi>\\n <mo>∈</mo>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mn>0</mn>\\n <mrow>\\n <mo>,</mo>\\n </mrow>\\n <mrow>\\n <mo>∞</mo>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is the range of Yukawa force. It is observed that as <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>λ</mi>\\n <mo>⟶</mo>\\n <mo>∞</mo>\\n </math>\\n </jats:inline-formula>, the mean-motion of the primaries <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>n</mi>\\n <mo>⟶</mo>\\n <msup>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>α</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> and as <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>λ</mi>\\n <mo>⟶</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mi>n</mi>\\n <mo>⟶</mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula>. Further, it is observed that the mean-motion is unity, i.e., <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula> for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>α</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mi>n</mi>\\n <mo>></mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula> if <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <mi>α</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\">\\n <mi>n</mi>\\n <mo><</mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula> when <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\">\\n <mi>α</mi>\\n <mo><</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula>. The triangular equilibria are not affected by <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\">\\n <mi>α</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M16\\\">\\n <mi>λ</mi>\\n </math>\\n </jats:inline-formula> and remain the same as in the classical case of restricted three-body problem. But, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M17\\\">\\n <mi>α</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M18\\\">\\n <mi>λ</mi>\\n </math>\\n </jats:inline-formula> affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M19\\\">\\n <msub>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>+</mo>\\n <mi>f</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>α</mi>\\n <mo>,</mo>\\n <mi>λ</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M20\\\">\\n <msub>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>0.0385209</mn>\\n <mo>⋯</mo>\\n </math>\\n </jats:inline-formula> is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M21\\\">\\n <msub>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> either for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M22\\\">\\n <mi>α</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula> or <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M23\\\">\\n <mi>λ</mi>\\n <mo>=</mo>\\n <mn>0.618034</mn>\\n </math>\\n </jats:inline-formula>, and the critical mass parameter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M24\\\">\\n \",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"44 1\",\"pages\":\"4072418:1-4072418:6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4072418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4072418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
0385209⋯⋯是限制三体问题经典情况下的临界质量参数值。我们还观察到μ c = μ 0对于α = 0或λ = 0.618034,和临界质量参数
Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential
We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of and on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where is the coupling constant of Yukawa force to gravitational force, and is the range of Yukawa force. It is observed that as , the mean-motion of the primaries and as , . Further, it is observed that the mean-motion is unity, i.e., for , if and when . The triangular equilibria are not affected by and and remain the same as in the classical case of restricted three-body problem. But, and affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter , where is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that either for or , and the critical mass parameter