考虑汤川势修正的R3BP中的三角均衡

M. J. Idrisi, Teklehaimanot Eshetie, Tenaw Tilahun, Mitiku Kerebh
{"title":"考虑汤川势修正的R3BP中的三角均衡","authors":"M. J. Idrisi, Teklehaimanot Eshetie, Tenaw Tilahun, Mitiku Kerebh","doi":"10.1155/2022/4072418","DOIUrl":null,"url":null,"abstract":"<jats:p>We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>α</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is the coupling constant of Yukawa force to gravitational force, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>λ</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>0</mn>\n <mrow>\n <mo>,</mo>\n </mrow>\n <mrow>\n <mo>∞</mo>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is the range of Yukawa force. It is observed that as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>λ</mi>\n <mo>⟶</mo>\n <mo>∞</mo>\n </math>\n </jats:inline-formula>, the mean-motion of the primaries <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>n</mi>\n <mo>⟶</mo>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>α</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> and as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>λ</mi>\n <mo>⟶</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>n</mi>\n <mo>⟶</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>. Further, it is observed that the mean-motion is unity, i.e., <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>α</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>n</mi>\n <mo>></mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>α</mi>\n <mo>></mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>n</mi>\n <mo><</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> when <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>α</mi>\n <mo><</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>. The triangular equilibria are not affected by <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> and remain the same as in the classical case of restricted three-body problem. But, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mi>c</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>+</mo>\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0.0385209</mn>\n <mo>⋯</mo>\n </math>\n </jats:inline-formula> is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mi>c</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> either for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\">\n <mi>α</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> or <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\">\n <mi>λ</mi>\n <mo>=</mo>\n <mn>0.618034</mn>\n </math>\n </jats:inline-formula>, and the critical mass parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M24\">\n ","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"44 1","pages":"4072418:1-4072418:6"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential\",\"authors\":\"M. J. Idrisi, Teklehaimanot Eshetie, Tenaw Tilahun, Mitiku Kerebh\",\"doi\":\"10.1155/2022/4072418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>α</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>λ</mi>\\n </math>\\n </jats:inline-formula> on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>α</mi>\\n <mo>∈</mo>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is the coupling constant of Yukawa force to gravitational force, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>λ</mi>\\n <mo>∈</mo>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mn>0</mn>\\n <mrow>\\n <mo>,</mo>\\n </mrow>\\n <mrow>\\n <mo>∞</mo>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is the range of Yukawa force. It is observed that as <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>λ</mi>\\n <mo>⟶</mo>\\n <mo>∞</mo>\\n </math>\\n </jats:inline-formula>, the mean-motion of the primaries <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>n</mi>\\n <mo>⟶</mo>\\n <msup>\\n <mrow>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>α</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> and as <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>λ</mi>\\n <mo>⟶</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mi>n</mi>\\n <mo>⟶</mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula>. Further, it is observed that the mean-motion is unity, i.e., <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula> for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>α</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mi>n</mi>\\n <mo>></mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula> if <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <mi>α</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\">\\n <mi>n</mi>\\n <mo><</mo>\\n <mn>1</mn>\\n </math>\\n </jats:inline-formula> when <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\">\\n <mi>α</mi>\\n <mo><</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula>. The triangular equilibria are not affected by <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\">\\n <mi>α</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M16\\\">\\n <mi>λ</mi>\\n </math>\\n </jats:inline-formula> and remain the same as in the classical case of restricted three-body problem. But, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M17\\\">\\n <mi>α</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M18\\\">\\n <mi>λ</mi>\\n </math>\\n </jats:inline-formula> affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M19\\\">\\n <msub>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>+</mo>\\n <mi>f</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>α</mi>\\n <mo>,</mo>\\n <mi>λ</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M20\\\">\\n <msub>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>0.0385209</mn>\\n <mo>⋯</mo>\\n </math>\\n </jats:inline-formula> is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M21\\\">\\n <msub>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> either for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M22\\\">\\n <mi>α</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula> or <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M23\\\">\\n <mi>λ</mi>\\n <mo>=</mo>\\n <mn>0.618034</mn>\\n </math>\\n </jats:inline-formula>, and the critical mass parameter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M24\\\">\\n \",\"PeriodicalId\":14766,\"journal\":{\"name\":\"J. Appl. Math.\",\"volume\":\"44 1\",\"pages\":\"4072418:1-4072418:6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4072418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4072418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

0385209⋯⋯是限制三体问题经典情况下的临界质量参数值。我们还观察到μ c = μ 0对于α = 0或λ = 0.618034,和临界质量参数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential
We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α 1 , 1 is the coupling constant of Yukawa force to gravitational force, and λ 0 , is the range of Yukawa force. It is observed that as λ , the mean-motion of the primaries n 1 + α 1 / 2 and as λ 0 , n 1 . Further, it is observed that the mean-motion is unity, i.e., n = 1 for α = 0 , n > 1 if α > 0 and n < 1 when α < 0 . The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μ c = μ 0 + f α , λ , where μ 0 = 0.0385209 is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μ c = μ 0 either for α = 0 or λ = 0.618034 , and the critical mass parameter
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信