结合检测跟踪的标签网格分类器在团队运动视频中的下体姿态估计

Q1 Computer Science
Masaki Hayashi, Kyoko Oshima, Masamoto Tanabiki, Y. Aoki
{"title":"结合检测跟踪的标签网格分类器在团队运动视频中的下体姿态估计","authors":"Masaki Hayashi, Kyoko Oshima, Masamoto Tanabiki, Y. Aoki","doi":"10.2197/ipsjtcva.7.18","DOIUrl":null,"url":null,"abstract":"We propose a human lower body pose estimation method for team sport videos, which is integrated with tracking-by-detection technique. The proposed Label-Grid classifier uses the grid histogram feature of the tracked window from the tracker and estimates the lower body joint position of a specific joint as the class label of the multiclass classifiers, whose classes correspond to the candidate joint positions on the grid. By learning various types of player poses and scales of Histogram-of-Oriented Gradients features within one team sport, our method can estimate poses even if the players are motion-blurred and low-resolution images without requiring a motion-model regression or part-based model, which are popular vision-based human pose estimation techniques. Moreover, our method can estimate poses with part-occlusions and non-upright side poses, which part-detector-based methods find it difficult to estimate with only one model. Experimental results show the advantage of our method for side running poses and non-walking poses. The results also show the robustness of our method for a large variety of poses and scales in team sports videos.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"14 1","pages":"18-30"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lower Body Pose Estimation in Team Sports Videos Using Label-Grid Classifier Integrated with Tracking-by-Detection\",\"authors\":\"Masaki Hayashi, Kyoko Oshima, Masamoto Tanabiki, Y. Aoki\",\"doi\":\"10.2197/ipsjtcva.7.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a human lower body pose estimation method for team sport videos, which is integrated with tracking-by-detection technique. The proposed Label-Grid classifier uses the grid histogram feature of the tracked window from the tracker and estimates the lower body joint position of a specific joint as the class label of the multiclass classifiers, whose classes correspond to the candidate joint positions on the grid. By learning various types of player poses and scales of Histogram-of-Oriented Gradients features within one team sport, our method can estimate poses even if the players are motion-blurred and low-resolution images without requiring a motion-model regression or part-based model, which are popular vision-based human pose estimation techniques. Moreover, our method can estimate poses with part-occlusions and non-upright side poses, which part-detector-based methods find it difficult to estimate with only one model. Experimental results show the advantage of our method for side running poses and non-walking poses. The results also show the robustness of our method for a large variety of poses and scales in team sports videos.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"14 1\",\"pages\":\"18-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.7.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种结合检测跟踪技术的团队运动视频人体下半身姿态估计方法。提出的标签-网格分类器利用跟踪窗口的网格直方图特征,估计特定关节的下体关节位置作为多类分类器的类标签,多类分类器的类对应于网格上的候选关节位置。通过学习一个团队运动中不同类型的运动员姿势和梯度直方图特征的尺度,我们的方法可以估计姿势,即使运动员是运动模糊和低分辨率的图像,也不需要运动模型回归或基于部分的模型,这是流行的基于视觉的人体姿势估计技术。此外,我们的方法可以估计部分遮挡和非直立侧位的姿态,这是基于部分检测器的方法仅使用一个模型难以估计的。实验结果表明,该方法对侧跑姿态和非步行姿态具有一定的优越性。结果还表明,我们的方法对团队运动视频中各种姿势和尺度的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower Body Pose Estimation in Team Sports Videos Using Label-Grid Classifier Integrated with Tracking-by-Detection
We propose a human lower body pose estimation method for team sport videos, which is integrated with tracking-by-detection technique. The proposed Label-Grid classifier uses the grid histogram feature of the tracked window from the tracker and estimates the lower body joint position of a specific joint as the class label of the multiclass classifiers, whose classes correspond to the candidate joint positions on the grid. By learning various types of player poses and scales of Histogram-of-Oriented Gradients features within one team sport, our method can estimate poses even if the players are motion-blurred and low-resolution images without requiring a motion-model regression or part-based model, which are popular vision-based human pose estimation techniques. Moreover, our method can estimate poses with part-occlusions and non-upright side poses, which part-detector-based methods find it difficult to estimate with only one model. Experimental results show the advantage of our method for side running poses and non-walking poses. The results also show the robustness of our method for a large variety of poses and scales in team sports videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信