表面活性剂生产中硫化产物中和过程的研究

O. Dzevochko, M. Podustov, I. Lysachenko, A. Dzevochko, Roman Vorozhbiian
{"title":"表面活性剂生产中硫化产物中和过程的研究","authors":"O. Dzevochko, M. Podustov, I. Lysachenko, A. Dzevochko, Roman Vorozhbiian","doi":"10.20998/2079-0821.2021.02.01","DOIUrl":null,"url":null,"abstract":"The process of sulfation products neutralization in the production of surfactants is not basic, but at this stage the positive effects obtained at the stage of sulfation of organic matter with sulfur trioxide gas are fixed. To preserve the degree of sulfation obtained, it is necessary to carry out the neutralization process under conditions precluding the occurrence of hydrolysis in an acidic medium. The neutralization reaction takes place with a high heat release of about 40 kJ / mol. Analysis of the literature data showed that the neutralization process is not well covered. Little data and hardware and technological design of the process. The process of neutralization in industrial conditions is carried out in apparatus with mechanical turbine mixers, to remove the heat of the exothermic reaction, the paste from the neutralizer is fed into a water-borne heat exchanger and returns to the neutralizer again. The purpose of this study is to determine the optimal technological parameters of the process of neutralization of sulfate products and the development of a mathematical model of this process. The results of experimental studies of the process of sulfation products neutralization with an aqueous solution of sodium hydroxide are presented. During the research, the influence of technological parameters on the quality indicators of neutralization products was determined, the main of which is the degree of sulfation. The optimal technological parameters for carrying out this process in a reactor with a stirrer under laboratory conditions were found. Based on the data obtained in the basis of this process, the use of a continuous-action reactor with a turbine mixer and with a combined heat exchanger. For the transition to an industrial reactor-neutralizer, a mathematical model has been developed, which makes it possible, by means of mathematical modeling, to correct technological parameters in industrial conditions.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INVESTIGATION OF THE NEUTRALIZATION PROCESS OF SULFATION PRODUCTS IN THE SURFACTANTS PRODUCTION\",\"authors\":\"O. Dzevochko, M. Podustov, I. Lysachenko, A. Dzevochko, Roman Vorozhbiian\",\"doi\":\"10.20998/2079-0821.2021.02.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of sulfation products neutralization in the production of surfactants is not basic, but at this stage the positive effects obtained at the stage of sulfation of organic matter with sulfur trioxide gas are fixed. To preserve the degree of sulfation obtained, it is necessary to carry out the neutralization process under conditions precluding the occurrence of hydrolysis in an acidic medium. The neutralization reaction takes place with a high heat release of about 40 kJ / mol. Analysis of the literature data showed that the neutralization process is not well covered. Little data and hardware and technological design of the process. The process of neutralization in industrial conditions is carried out in apparatus with mechanical turbine mixers, to remove the heat of the exothermic reaction, the paste from the neutralizer is fed into a water-borne heat exchanger and returns to the neutralizer again. The purpose of this study is to determine the optimal technological parameters of the process of neutralization of sulfate products and the development of a mathematical model of this process. The results of experimental studies of the process of sulfation products neutralization with an aqueous solution of sodium hydroxide are presented. During the research, the influence of technological parameters on the quality indicators of neutralization products was determined, the main of which is the degree of sulfation. The optimal technological parameters for carrying out this process in a reactor with a stirrer under laboratory conditions were found. Based on the data obtained in the basis of this process, the use of a continuous-action reactor with a turbine mixer and with a combined heat exchanger. For the transition to an industrial reactor-neutralizer, a mathematical model has been developed, which makes it possible, by means of mathematical modeling, to correct technological parameters in industrial conditions.\",\"PeriodicalId\":9407,\"journal\":{\"name\":\"Bulletin of the National Technical University \\\"KhPI\\\". Series: Chemistry, Chemical Technology and Ecology\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the National Technical University \\\"KhPI\\\". Series: Chemistry, Chemical Technology and Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2079-0821.2021.02.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2079-0821.2021.02.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表面活性剂生产中磺化产物中和的过程不是碱性的,但在这一阶段,有机物与三氧化硫气体磺化阶段所获得的积极效果是固定的。为了保持所获得的磺化程度,有必要在酸性介质中防止水解发生的条件下进行中和过程。中和反应放出热量高,约为40 kJ / mol。对文献数据的分析表明,对中和过程的报道并不充分。小数据和硬件工艺设计的过程。工业条件下的中和过程是在机械涡轮混合器的设备中进行的,为了去除放热反应的热量,中和器中的膏体被送入水性热交换器并再次返回中和器。本研究的目的是确定硫酸盐产品中和过程的最佳工艺参数,并建立该过程的数学模型。介绍了用氢氧化钠水溶液中和硫酸化产物过程的实验研究结果。在研究过程中,确定了工艺参数对中和产品质量指标的影响,其中主要是磺化程度。找到了在实验室条件下在带搅拌器的反应器中进行该工艺的最佳工艺参数。根据在此过程中获得的数据,采用了连续作用反应器与涡轮混合器和组合式热交换器。为了向工业反应器中和剂过渡,建立了一个数学模型,使其能够通过数学建模来纠正工业条件下的技术参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INVESTIGATION OF THE NEUTRALIZATION PROCESS OF SULFATION PRODUCTS IN THE SURFACTANTS PRODUCTION
The process of sulfation products neutralization in the production of surfactants is not basic, but at this stage the positive effects obtained at the stage of sulfation of organic matter with sulfur trioxide gas are fixed. To preserve the degree of sulfation obtained, it is necessary to carry out the neutralization process under conditions precluding the occurrence of hydrolysis in an acidic medium. The neutralization reaction takes place with a high heat release of about 40 kJ / mol. Analysis of the literature data showed that the neutralization process is not well covered. Little data and hardware and technological design of the process. The process of neutralization in industrial conditions is carried out in apparatus with mechanical turbine mixers, to remove the heat of the exothermic reaction, the paste from the neutralizer is fed into a water-borne heat exchanger and returns to the neutralizer again. The purpose of this study is to determine the optimal technological parameters of the process of neutralization of sulfate products and the development of a mathematical model of this process. The results of experimental studies of the process of sulfation products neutralization with an aqueous solution of sodium hydroxide are presented. During the research, the influence of technological parameters on the quality indicators of neutralization products was determined, the main of which is the degree of sulfation. The optimal technological parameters for carrying out this process in a reactor with a stirrer under laboratory conditions were found. Based on the data obtained in the basis of this process, the use of a continuous-action reactor with a turbine mixer and with a combined heat exchanger. For the transition to an industrial reactor-neutralizer, a mathematical model has been developed, which makes it possible, by means of mathematical modeling, to correct technological parameters in industrial conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信