连分式在数字计算机上快速求函数的应用

Amnon Bracha
{"title":"连分式在数字计算机上快速求函数的应用","authors":"Amnon Bracha","doi":"10.1109/ARITH.1972.6153908","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to develop a method for evaluation of certain elementary functions on a digital computer by the use of continued fractions. The time required for this evaluation is drastically reduced by using “short” operations like shift and add, instead of multiplications. Consistency is the most important factor that allows the expansion of a function into a continued fraction. Several cases are discussed and in particular the solution of the quadratic equation is discussed in more detail to demonstrate the convergence of the method.","PeriodicalId":6526,"journal":{"name":"2015 IEEE 22nd Symposium on Computer Arithmetic","volume":"18 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"1972-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of continued fractions for fast evaluation of certain functions on a digital computer\",\"authors\":\"Amnon Bracha\",\"doi\":\"10.1109/ARITH.1972.6153908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to develop a method for evaluation of certain elementary functions on a digital computer by the use of continued fractions. The time required for this evaluation is drastically reduced by using “short” operations like shift and add, instead of multiplications. Consistency is the most important factor that allows the expansion of a function into a continued fraction. Several cases are discussed and in particular the solution of the quadratic equation is discussed in more detail to demonstrate the convergence of the method.\",\"PeriodicalId\":6526,\"journal\":{\"name\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"volume\":\"18 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1972.6153908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1972.6153908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是发展一种利用连分式在数字计算机上求某些初等函数的方法。通过使用移位和加法等“短”操作,而不是乘法,这种计算所需的时间大大减少了。一致性是允许将函数展开为连分式的最重要因素。讨论了几种情况,特别详细地讨论了二次方程的解,以证明该方法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of continued fractions for fast evaluation of certain functions on a digital computer
The purpose of this paper is to develop a method for evaluation of certain elementary functions on a digital computer by the use of continued fractions. The time required for this evaluation is drastically reduced by using “short” operations like shift and add, instead of multiplications. Consistency is the most important factor that allows the expansion of a function into a continued fraction. Several cases are discussed and in particular the solution of the quadratic equation is discussed in more detail to demonstrate the convergence of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信