稀疏相关滤波器的视觉跟踪

Yanmei Dong, Min Yang, Mingtao Pei
{"title":"稀疏相关滤波器的视觉跟踪","authors":"Yanmei Dong, Min Yang, Mingtao Pei","doi":"10.1109/ICIP.2016.7532395","DOIUrl":null,"url":null,"abstract":"Correlation filters have recently made significant improvements in visual object tracking on both efficiency and accuracy. In this paper, we propose a sparse correlation filter, which combines the effectiveness of sparse representation and the computational efficiency of correlation filters. The sparse representation is achieved through solving an ℓ0 regularized least squares problem. The obtained sparse correlation filters are able to represent the essential information of the tracked target while being insensitive to noise. During tracking, the appearance of the target is modeled by a sparse correlation filter, and the filter is re-trained after tracking on each frame to adapt to the appearance changes of the target. The experimental results on the CVPR2013 Online Object Tracking Benchmark (OOTB) show the effectiveness of our sparse correlation filter-based tracker.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"13 1","pages":"439-443"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Visual tracking with sparse correlation filters\",\"authors\":\"Yanmei Dong, Min Yang, Mingtao Pei\",\"doi\":\"10.1109/ICIP.2016.7532395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correlation filters have recently made significant improvements in visual object tracking on both efficiency and accuracy. In this paper, we propose a sparse correlation filter, which combines the effectiveness of sparse representation and the computational efficiency of correlation filters. The sparse representation is achieved through solving an ℓ0 regularized least squares problem. The obtained sparse correlation filters are able to represent the essential information of the tracked target while being insensitive to noise. During tracking, the appearance of the target is modeled by a sparse correlation filter, and the filter is re-trained after tracking on each frame to adapt to the appearance changes of the target. The experimental results on the CVPR2013 Online Object Tracking Benchmark (OOTB) show the effectiveness of our sparse correlation filter-based tracker.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"13 1\",\"pages\":\"439-443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

最近,相关滤波器在视觉目标跟踪的效率和准确性上都取得了显著的进步。本文提出了一种稀疏相关滤波器,它结合了稀疏表示的有效性和相关滤波器的计算效率。通过求解一个l0正则化最小二乘问题来实现稀疏表示。得到的稀疏相关滤波器既能反映被跟踪目标的基本信息,又对噪声不敏感。在跟踪过程中,利用稀疏相关滤波器对目标的外观进行建模,并在每帧跟踪后对滤波器进行重新训练,以适应目标的外观变化。在CVPR2013在线目标跟踪基准(OOTB)上的实验结果表明了我们基于稀疏相关滤波器的跟踪器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual tracking with sparse correlation filters
Correlation filters have recently made significant improvements in visual object tracking on both efficiency and accuracy. In this paper, we propose a sparse correlation filter, which combines the effectiveness of sparse representation and the computational efficiency of correlation filters. The sparse representation is achieved through solving an ℓ0 regularized least squares problem. The obtained sparse correlation filters are able to represent the essential information of the tracked target while being insensitive to noise. During tracking, the appearance of the target is modeled by a sparse correlation filter, and the filter is re-trained after tracking on each frame to adapt to the appearance changes of the target. The experimental results on the CVPR2013 Online Object Tracking Benchmark (OOTB) show the effectiveness of our sparse correlation filter-based tracker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信