{"title":"聚酪胺复合材料在聚乙二醇修饰电极表面的电化学赝电容性能增强","authors":"A. Ehsani, M. Moftakhar","doi":"10.1080/14658011.2023.2219085","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the present study, we introduce the first study for investigating the effect of polyethylene glycol (PEG) on the electrochemical performance of the PTy electroactive film. In this work, we applied PEG to improve electrochemical performance of PTy electroactive film. The electrochemical properties of the prepared electrodes were investigated by means of various electrochemical methods including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and consecutive charge/discharge. The developed electrode in this study exhibits a specific capacity of 4200 mF.cm−2 at 5 mA.cm−2 current density while retaining 90% of the initial capacitance after 3000 cycles. Our results provide an improved conductive polymer composite film with high active surface area, ease of synthesis and high cycling stability for supercapacitors (SCs) in aqueous electrolytes. GRAPHICAL ABSTRACT","PeriodicalId":20245,"journal":{"name":"Plastics, Rubber and Composites","volume":"13 1","pages":"415 - 419"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced electrochemical pseudocapacitance performance of poly tyramine composite on the surface of polyethylene glycol modified electrode\",\"authors\":\"A. Ehsani, M. Moftakhar\",\"doi\":\"10.1080/14658011.2023.2219085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the present study, we introduce the first study for investigating the effect of polyethylene glycol (PEG) on the electrochemical performance of the PTy electroactive film. In this work, we applied PEG to improve electrochemical performance of PTy electroactive film. The electrochemical properties of the prepared electrodes were investigated by means of various electrochemical methods including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and consecutive charge/discharge. The developed electrode in this study exhibits a specific capacity of 4200 mF.cm−2 at 5 mA.cm−2 current density while retaining 90% of the initial capacitance after 3000 cycles. Our results provide an improved conductive polymer composite film with high active surface area, ease of synthesis and high cycling stability for supercapacitors (SCs) in aqueous electrolytes. GRAPHICAL ABSTRACT\",\"PeriodicalId\":20245,\"journal\":{\"name\":\"Plastics, Rubber and Composites\",\"volume\":\"13 1\",\"pages\":\"415 - 419\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plastics, Rubber and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14658011.2023.2219085\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastics, Rubber and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14658011.2023.2219085","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Enhanced electrochemical pseudocapacitance performance of poly tyramine composite on the surface of polyethylene glycol modified electrode
ABSTRACT In the present study, we introduce the first study for investigating the effect of polyethylene glycol (PEG) on the electrochemical performance of the PTy electroactive film. In this work, we applied PEG to improve electrochemical performance of PTy electroactive film. The electrochemical properties of the prepared electrodes were investigated by means of various electrochemical methods including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and consecutive charge/discharge. The developed electrode in this study exhibits a specific capacity of 4200 mF.cm−2 at 5 mA.cm−2 current density while retaining 90% of the initial capacitance after 3000 cycles. Our results provide an improved conductive polymer composite film with high active surface area, ease of synthesis and high cycling stability for supercapacitors (SCs) in aqueous electrolytes. GRAPHICAL ABSTRACT
期刊介绍:
Plastics, Rubber and Composites: Macromolecular Engineering provides an international forum for the publication of original, peer-reviewed research on the macromolecular engineering of polymeric and related materials and polymer matrix composites. Modern polymer processing is increasingly focused on macromolecular engineering: the manipulation of structure at the molecular scale to control properties and fitness for purpose of the final component. Intimately linked to this are the objectives of predicting properties in the context of an optimised design and of establishing robust processing routes and process control systems allowing the desired properties to be achieved reliably.