定义生成的细粒度对比学习

Q3 Environmental Science
Hengyuan Zhang, Dawei Li, Shiping Yang, Yanran Li
{"title":"定义生成的细粒度对比学习","authors":"Hengyuan Zhang, Dawei Li, Shiping Yang, Yanran Li","doi":"10.48550/arXiv.2210.00543","DOIUrl":null,"url":null,"abstract":"Recently, pre-trained transformer-based models have achieved great success in the task of definition generation (DG). However, previous encoder-decoder models lack effective representation learning to contain full semantic components of the given word, which leads to generating under-specific definitions. To address this problem, we propose a novel contrastive learning method, encouraging the model to capture more detailed semantic representations from the definition sequence encoding. According to both automatic and manual evaluation, the experimental results on three mainstream benchmarks demonstrate that the proposed method could generate more specific and high-quality definitions compared with several state-of-the-art models.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"112 1","pages":"1001-1012"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fine-grained Contrastive Learning for Definition Generation\",\"authors\":\"Hengyuan Zhang, Dawei Li, Shiping Yang, Yanran Li\",\"doi\":\"10.48550/arXiv.2210.00543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, pre-trained transformer-based models have achieved great success in the task of definition generation (DG). However, previous encoder-decoder models lack effective representation learning to contain full semantic components of the given word, which leads to generating under-specific definitions. To address this problem, we propose a novel contrastive learning method, encouraging the model to capture more detailed semantic representations from the definition sequence encoding. According to both automatic and manual evaluation, the experimental results on three mainstream benchmarks demonstrate that the proposed method could generate more specific and high-quality definitions compared with several state-of-the-art models.\",\"PeriodicalId\":39298,\"journal\":{\"name\":\"AACL Bioflux\",\"volume\":\"112 1\",\"pages\":\"1001-1012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AACL Bioflux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.00543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.00543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3

摘要

近年来,基于预训练变压器的模型在定义生成(DG)任务中取得了巨大成功。然而,以前的编码器-解码器模型缺乏有效的表示学习来包含给定单词的完整语义组件,这导致生成不特定的定义。为了解决这个问题,我们提出了一种新的对比学习方法,鼓励模型从定义序列编码中捕获更详细的语义表示。根据自动和手动评估,在三个主流基准上的实验结果表明,与几种最先进的模型相比,该方法可以生成更具体和高质量的定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-grained Contrastive Learning for Definition Generation
Recently, pre-trained transformer-based models have achieved great success in the task of definition generation (DG). However, previous encoder-decoder models lack effective representation learning to contain full semantic components of the given word, which leads to generating under-specific definitions. To address this problem, we propose a novel contrastive learning method, encouraging the model to capture more detailed semantic representations from the definition sequence encoding. According to both automatic and manual evaluation, the experimental results on three mainstream benchmarks demonstrate that the proposed method could generate more specific and high-quality definitions compared with several state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信