用于大范围压力检测的超灵敏分层压阻压力传感器

Jing Li, Tianyu Wu, Huan Jiang, Yanyu Chen, Qibiao Yang
{"title":"用于大范围压力检测的超灵敏分层压阻压力传感器","authors":"Jing Li, Tianyu Wu, Huan Jiang, Yanyu Chen, Qibiao Yang","doi":"10.1002/aisy.202100070","DOIUrl":null,"url":null,"abstract":"Pressure sensitivity and wide range are two crucial features of flexible electromechanical sensors for applications in the next‐generation of intelligent electronics, such as wearable healthcare monitors and soft human–machine interfaces. Conventional pressure sensors have a narrow pressure range (<10 kPa) and complex fabrication processes, which significantly hinder their extensive applications. A facile laser‐engraving method is proposed to fabricate a flexible multiwalled‐carbon‐nanotube (MWCNTs)/poly(dimethylsiloxane) (PDMS) composite‐based piezoresistive sensor with hierarchical microstructures. Herein, the nonstandard‐circular feature and Gaussian distributed facula of a laser spot are utilized to produce the middle‐level porous microdome upon the bottom‐level cylinder microcolumn array, while the top‐level tentacle‐like conical micropillars are produced by vertically rotating the acrylic mold during the laser engraving process. This novel hierarchical microstructure endows the proposed piezoresistive sensor with orders‐of‐magnitude of higher sensitivity (≈35.51 kPa−1) than that of other reported electromechanical sensors and a more extensive pressure sensing range up to 23 kPa. Moreover, the detection limit of the sensor is down to 2 Pa, which makes it a desirable candidate for monitoring subtle pressure. The sensor is successfully applied to distinguish the syllables of each pronounced word, detect movements of the human wrist, and monitor radial arterial pulse, thus demonstrating its promising applications in wearable electronics.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Ultrasensitive Hierarchical Piezoresistive Pressure Sensor for Wide‐Range Pressure Detection\",\"authors\":\"Jing Li, Tianyu Wu, Huan Jiang, Yanyu Chen, Qibiao Yang\",\"doi\":\"10.1002/aisy.202100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pressure sensitivity and wide range are two crucial features of flexible electromechanical sensors for applications in the next‐generation of intelligent electronics, such as wearable healthcare monitors and soft human–machine interfaces. Conventional pressure sensors have a narrow pressure range (<10 kPa) and complex fabrication processes, which significantly hinder their extensive applications. A facile laser‐engraving method is proposed to fabricate a flexible multiwalled‐carbon‐nanotube (MWCNTs)/poly(dimethylsiloxane) (PDMS) composite‐based piezoresistive sensor with hierarchical microstructures. Herein, the nonstandard‐circular feature and Gaussian distributed facula of a laser spot are utilized to produce the middle‐level porous microdome upon the bottom‐level cylinder microcolumn array, while the top‐level tentacle‐like conical micropillars are produced by vertically rotating the acrylic mold during the laser engraving process. This novel hierarchical microstructure endows the proposed piezoresistive sensor with orders‐of‐magnitude of higher sensitivity (≈35.51 kPa−1) than that of other reported electromechanical sensors and a more extensive pressure sensing range up to 23 kPa. Moreover, the detection limit of the sensor is down to 2 Pa, which makes it a desirable candidate for monitoring subtle pressure. The sensor is successfully applied to distinguish the syllables of each pronounced word, detect movements of the human wrist, and monitor radial arterial pulse, thus demonstrating its promising applications in wearable electronics.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202100070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202100070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

压力灵敏度和宽范围是柔性机电传感器在下一代智能电子产品中应用的两个关键特征,例如可穿戴式医疗监视器和软人机界面。传统压力传感器的压力范围较窄(< 10kpa),制造工艺复杂,严重阻碍了其广泛应用。提出了一种简单的激光雕刻方法,用于制造具有分层微结构的柔性多壁碳纳米管(MWCNTs)/聚二甲基硅氧烷(PDMS)复合材料压阻传感器。本文利用激光光斑的非标准圆形特征和高斯分布光斑,在底层圆柱形微柱阵列上形成中层多孔微球,而在激光雕刻过程中,通过垂直旋转亚克力模具形成顶层触手状锥形微柱。这种新颖的分层结构使所提出的压阻式传感器具有比其他报道的机电传感器更高的灵敏度(≈35.51 kPa−1)和更广泛的压力传感范围,最高可达23 kPa。此外,传感器的检测极限低至2pa,这使得它成为监测细微压力的理想候选者。该传感器成功地应用于识别每个发音单词的音节,检测人体手腕的运动,监测桡动脉脉搏,从而展示了其在可穿戴电子产品中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasensitive Hierarchical Piezoresistive Pressure Sensor for Wide‐Range Pressure Detection
Pressure sensitivity and wide range are two crucial features of flexible electromechanical sensors for applications in the next‐generation of intelligent electronics, such as wearable healthcare monitors and soft human–machine interfaces. Conventional pressure sensors have a narrow pressure range (<10 kPa) and complex fabrication processes, which significantly hinder their extensive applications. A facile laser‐engraving method is proposed to fabricate a flexible multiwalled‐carbon‐nanotube (MWCNTs)/poly(dimethylsiloxane) (PDMS) composite‐based piezoresistive sensor with hierarchical microstructures. Herein, the nonstandard‐circular feature and Gaussian distributed facula of a laser spot are utilized to produce the middle‐level porous microdome upon the bottom‐level cylinder microcolumn array, while the top‐level tentacle‐like conical micropillars are produced by vertically rotating the acrylic mold during the laser engraving process. This novel hierarchical microstructure endows the proposed piezoresistive sensor with orders‐of‐magnitude of higher sensitivity (≈35.51 kPa−1) than that of other reported electromechanical sensors and a more extensive pressure sensing range up to 23 kPa. Moreover, the detection limit of the sensor is down to 2 Pa, which makes it a desirable candidate for monitoring subtle pressure. The sensor is successfully applied to distinguish the syllables of each pronounced word, detect movements of the human wrist, and monitor radial arterial pulse, thus demonstrating its promising applications in wearable electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信