迎风局部径向基函数有限差分(RBF-FD)法求解可压缩欧拉方程及其在有限速率化学中的应用

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Mostafa Abbaszadeh, M. Dehghan, G. Karamali
{"title":"迎风局部径向基函数有限差分(RBF-FD)法求解可压缩欧拉方程及其在有限速率化学中的应用","authors":"Mostafa Abbaszadeh, M. Dehghan, G. Karamali","doi":"10.22052/IJMC.2017.106402.1325","DOIUrl":null,"url":null,"abstract":"The main aim of the current paper is to propose an upwind local radial basis functions-finite difference (RBF-FD) method for solving compressible Euler equation. The mathematical formulation of chemically reacting, inviscid, unsteady flows with species conservation equations and finite-rate chemistry is studied. The presented technique is based on the developed idea in [58]. For checking the ability of the new procedure, the compressible Euler equation is solved. This equation has been classified in category of system of advection-diffusion equations. The solutions of advection equations have some shock, thus, special numerical methods should be applied for example discontinuous Galerkin and finite volume methods. Moreover, two problems are given that show the acceptable accuracy and efficiency of the proposed scheme.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An upwind local radial basis functions-finite difference (RBF-FD) method for solving compressible Euler equation with application in finite-rate Chemistry\",\"authors\":\"Mostafa Abbaszadeh, M. Dehghan, G. Karamali\",\"doi\":\"10.22052/IJMC.2017.106402.1325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of the current paper is to propose an upwind local radial basis functions-finite difference (RBF-FD) method for solving compressible Euler equation. The mathematical formulation of chemically reacting, inviscid, unsteady flows with species conservation equations and finite-rate chemistry is studied. The presented technique is based on the developed idea in [58]. For checking the ability of the new procedure, the compressible Euler equation is solved. This equation has been classified in category of system of advection-diffusion equations. The solutions of advection equations have some shock, thus, special numerical methods should be applied for example discontinuous Galerkin and finite volume methods. Moreover, two problems are given that show the acceptable accuracy and efficiency of the proposed scheme.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2017.106402.1325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2017.106402.1325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文的主要目的是提出一种迎风局部径向基函数有限差分(RBF-FD)方法来求解可压缩欧拉方程。研究了具有物种守恒方程和有限速率化学的化学反应、无粘、非定常流动的数学表达式。提出的技术是基于b[58]中发展起来的思想。为了验证新方法的能力,对可压缩欧拉方程进行了求解。该方程属于平流扩散方程组的范畴。平流方程的解具有一定的激波,因此需要采用特殊的数值方法,如不连续伽辽金法和有限体积法。最后给出了两个问题,验证了该方法的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An upwind local radial basis functions-finite difference (RBF-FD) method for solving compressible Euler equation with application in finite-rate Chemistry
The main aim of the current paper is to propose an upwind local radial basis functions-finite difference (RBF-FD) method for solving compressible Euler equation. The mathematical formulation of chemically reacting, inviscid, unsteady flows with species conservation equations and finite-rate chemistry is studied. The presented technique is based on the developed idea in [58]. For checking the ability of the new procedure, the compressible Euler equation is solved. This equation has been classified in category of system of advection-diffusion equations. The solutions of advection equations have some shock, thus, special numerical methods should be applied for example discontinuous Galerkin and finite volume methods. Moreover, two problems are given that show the acceptable accuracy and efficiency of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信