样本协方差矩阵线性特征值统计差异的波动

IF 0.9 4区 数学 Q4 PHYSICS, MATHEMATICAL
Giorgio Cipolloni, L. Erdős
{"title":"样本协方差矩阵线性特征值统计差异的波动","authors":"Giorgio Cipolloni, L. Erdős","doi":"10.1142/S2010326320500069","DOIUrl":null,"url":null,"abstract":"We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix [Formula: see text] and its minor [Formula: see text]. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of [Formula: see text] and [Formula: see text]. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"87 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices\",\"authors\":\"Giorgio Cipolloni, L. Erdős\",\"doi\":\"10.1142/S2010326320500069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix [Formula: see text] and its minor [Formula: see text]. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of [Formula: see text] and [Formula: see text]. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.\",\"PeriodicalId\":54329,\"journal\":{\"name\":\"Random Matrices-Theory and Applications\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Matrices-Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326320500069\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326320500069","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 7

摘要

我们证明了样本协方差矩阵的线性特征值统计量[公式:见文]及其次[公式:见文]之差的一个中心极限定理。我们发现,由于[公式:见文]和[公式:见文]的特征值之间存在很强的相关性,这种差异的波动比个别线性统计的波动要小得多。我们的结果识别了Dumitru和Paquette最近的论文中近似高斯场的空间导数的波动。与Wigner矩阵的类似结果不同,对于样本协方差矩阵,波动可能完全消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices
We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix [Formula: see text] and its minor [Formula: see text]. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of [Formula: see text] and [Formula: see text]. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Matrices-Theory and Applications
Random Matrices-Theory and Applications Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
11.10%
发文量
29
期刊介绍: Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics. Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory. Special issues devoted to single topic of current interest will also be considered and published in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信