样本协方差矩阵线性特征值统计差异的波动

Pub Date : 2020-07-01 DOI:10.1142/S2010326320500069
Giorgio Cipolloni, L. Erdős
{"title":"样本协方差矩阵线性特征值统计差异的波动","authors":"Giorgio Cipolloni, L. Erdős","doi":"10.1142/S2010326320500069","DOIUrl":null,"url":null,"abstract":"We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix [Formula: see text] and its minor [Formula: see text]. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of [Formula: see text] and [Formula: see text]. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices\",\"authors\":\"Giorgio Cipolloni, L. Erdős\",\"doi\":\"10.1142/S2010326320500069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix [Formula: see text] and its minor [Formula: see text]. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of [Formula: see text] and [Formula: see text]. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326320500069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326320500069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们证明了样本协方差矩阵的线性特征值统计量[公式:见文]及其次[公式:见文]之差的一个中心极限定理。我们发现,由于[公式:见文]和[公式:见文]的特征值之间存在很强的相关性,这种差异的波动比个别线性统计的波动要小得多。我们的结果识别了Dumitru和Paquette最近的论文中近似高斯场的空间导数的波动。与Wigner矩阵的类似结果不同,对于样本协方差矩阵,波动可能完全消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices
We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix [Formula: see text] and its minor [Formula: see text]. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of [Formula: see text] and [Formula: see text]. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信