街道清扫问题的近似算法

Luis Francisco Hernández Sánchez, Laura Chávez-Lomelí, F. Martínez
{"title":"街道清扫问题的近似算法","authors":"Luis Francisco Hernández Sánchez, Laura Chávez-Lomelí, F. Martínez","doi":"10.1109/ICEEE.2014.6978276","DOIUrl":null,"url":null,"abstract":"The Street sweeping problem (SSP) is a variation of the Windy postman problem (WPP) in which we must construct two tours traversing every edge, and each edge must be traversed once in each direction: one on the first tour and the opposite in the second tour. The computational complexity of this problem remains open. We present a (3/2 α + 1)-approximation algorithm for the SSP using an α-approximation algorithm for the WPP. We also present exact algorithms for some classes of graphs.","PeriodicalId":6661,"journal":{"name":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"97 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation algorithms for the Street sweeping problem\",\"authors\":\"Luis Francisco Hernández Sánchez, Laura Chávez-Lomelí, F. Martínez\",\"doi\":\"10.1109/ICEEE.2014.6978276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Street sweeping problem (SSP) is a variation of the Windy postman problem (WPP) in which we must construct two tours traversing every edge, and each edge must be traversed once in each direction: one on the first tour and the opposite in the second tour. The computational complexity of this problem remains open. We present a (3/2 α + 1)-approximation algorithm for the SSP using an α-approximation algorithm for the WPP. We also present exact algorithms for some classes of graphs.\",\"PeriodicalId\":6661,\"journal\":{\"name\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"97 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2014.6978276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2014.6978276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

扫街问题(SSP)是风邮差问题(WPP)的一个变体,在这个问题中,我们必须构造两次遍历每条边,每条边必须在每个方向上遍历一次:第一次遍历一次,第二次遍历一次。这个问题的计算复杂性仍然是开放的。利用WPP的α-近似算法,提出了SSP的(3/2 α + 1)近似算法。我们也给出了一些图的精确算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation algorithms for the Street sweeping problem
The Street sweeping problem (SSP) is a variation of the Windy postman problem (WPP) in which we must construct two tours traversing every edge, and each edge must be traversed once in each direction: one on the first tour and the opposite in the second tour. The computational complexity of this problem remains open. We present a (3/2 α + 1)-approximation algorithm for the SSP using an α-approximation algorithm for the WPP. We also present exact algorithms for some classes of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信