子集和的一个简单的近线性伪多项式时间随机化算法

Ce Jin, Hongxun Wu
{"title":"子集和的一个简单的近线性伪多项式时间随机化算法","authors":"Ce Jin, Hongxun Wu","doi":"10.4230/OASIcs.SOSA.2019.17","DOIUrl":null,"url":null,"abstract":"Given a multiset S of n positive integers and a target integer t, the Subset Sum problem asks to determine whether there exists a subset of S that sums up to t. The current best deterministic algorithm, by Koiliaris and Xu [SODA'17], runs in O~(sqrt{n}t) time, where O~ hides poly-logarithm factors. Bringmann [SODA'17] later gave a randomized O~(n + t) time algorithm using two-stage color-coding. The O~(n+t) running time is believed to be near-optimal.\nIn this paper, we present a simple and elegant randomized algorithm for Subset Sum in O~(n + t) time. Our new algorithm actually solves its counting version modulo prime p>t, by manipulating generating functions using FFT.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"34 1","pages":"17:1-17:6"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum\",\"authors\":\"Ce Jin, Hongxun Wu\",\"doi\":\"10.4230/OASIcs.SOSA.2019.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a multiset S of n positive integers and a target integer t, the Subset Sum problem asks to determine whether there exists a subset of S that sums up to t. The current best deterministic algorithm, by Koiliaris and Xu [SODA'17], runs in O~(sqrt{n}t) time, where O~ hides poly-logarithm factors. Bringmann [SODA'17] later gave a randomized O~(n + t) time algorithm using two-stage color-coding. The O~(n+t) running time is believed to be near-optimal.\\nIn this paper, we present a simple and elegant randomized algorithm for Subset Sum in O~(n + t) time. Our new algorithm actually solves its counting version modulo prime p>t, by manipulating generating functions using FFT.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"34 1\",\"pages\":\"17:1-17:6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.SOSA.2019.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.SOSA.2019.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

给定一个包含n个正整数的多集S和一个目标整数t,子集和问题要求确定是否存在S的一个子集求和为t。目前最好的确定性算法,由Koiliaris和Xu [SODA'17],运行时间为O~(sqrt{n}t),其中O~隐藏了多对数因子。Bringmann [SODA'17]随后给出了一种使用两阶段颜色编码的随机O~(n + t)时间算法。O~(n+t)的运行时间被认为是接近最优的。在本文中,我们提出了一个简单而优雅的子集和的随机化算法,时间为O~(n + t)。我们的新算法实际上解决了它的计数版本modulo ' p>t,通过使用FFT操作生成函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum
Given a multiset S of n positive integers and a target integer t, the Subset Sum problem asks to determine whether there exists a subset of S that sums up to t. The current best deterministic algorithm, by Koiliaris and Xu [SODA'17], runs in O~(sqrt{n}t) time, where O~ hides poly-logarithm factors. Bringmann [SODA'17] later gave a randomized O~(n + t) time algorithm using two-stage color-coding. The O~(n+t) running time is believed to be near-optimal. In this paper, we present a simple and elegant randomized algorithm for Subset Sum in O~(n + t) time. Our new algorithm actually solves its counting version modulo prime p>t, by manipulating generating functions using FFT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信