用Ubertooth重新研究蓝牙自适应跳频预测

Janggoon Lee, Chanhee Park, Heejun Roh
{"title":"用Ubertooth重新研究蓝牙自适应跳频预测","authors":"Janggoon Lee, Chanhee Park, Heejun Roh","doi":"10.1109/ICOIN50884.2021.9333996","DOIUrl":null,"url":null,"abstract":"Due to frequency hopping nature of Bluetooth, sniffing Bluetooth traffic with low-cost devices is a challenging problem. To this end, a state-of-the-art low-cost sniffing system employing two cheap Ubertooth devices [1], proposes machine learning-based prediction technique for adaptive frequency hopping (AFH) map by collecting packet statistics and spectrum sensing. In this paper, we revisit the AFH prediction problem. Our intention of this approach is that proposing better way to label data set to train Support Vector Machine (SVM) that could be done without measuring packet rates by visiting all 79 channels. We build a prototype of AFH prediction technique with a Ubertooth and a SVM. Our result shows that high accuracy can be achieved without the packet-based classifier of BlueEar.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"26 1","pages":"715-717"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Revisiting Bluetooth Adaptive Frequency Hopping Prediction with a Ubertooth\",\"authors\":\"Janggoon Lee, Chanhee Park, Heejun Roh\",\"doi\":\"10.1109/ICOIN50884.2021.9333996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to frequency hopping nature of Bluetooth, sniffing Bluetooth traffic with low-cost devices is a challenging problem. To this end, a state-of-the-art low-cost sniffing system employing two cheap Ubertooth devices [1], proposes machine learning-based prediction technique for adaptive frequency hopping (AFH) map by collecting packet statistics and spectrum sensing. In this paper, we revisit the AFH prediction problem. Our intention of this approach is that proposing better way to label data set to train Support Vector Machine (SVM) that could be done without measuring packet rates by visiting all 79 channels. We build a prototype of AFH prediction technique with a Ubertooth and a SVM. Our result shows that high accuracy can be achieved without the packet-based classifier of BlueEar.\",\"PeriodicalId\":6741,\"journal\":{\"name\":\"2021 International Conference on Information Networking (ICOIN)\",\"volume\":\"26 1\",\"pages\":\"715-717\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN50884.2021.9333996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于蓝牙的跳频特性,用低成本设备嗅探蓝牙通信是一个具有挑战性的问题。为此,一种采用两个廉价Ubertooth设备的最先进的低成本嗅探系统[1]提出了基于机器学习的自适应跳频(AFH)地图预测技术,该技术通过收集数据包统计数据和频谱感知。在本文中,我们重新讨论了AFH预测问题。这种方法的目的是提出一种更好的方法来标记数据集来训练支持向量机(SVM),这种方法可以在不通过访问所有79个通道来测量数据包速率的情况下完成。我们用Ubertooth和SVM构建了AFH预测技术的原型。结果表明,在不使用BlueEar的分组分类器的情况下,也能达到较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting Bluetooth Adaptive Frequency Hopping Prediction with a Ubertooth
Due to frequency hopping nature of Bluetooth, sniffing Bluetooth traffic with low-cost devices is a challenging problem. To this end, a state-of-the-art low-cost sniffing system employing two cheap Ubertooth devices [1], proposes machine learning-based prediction technique for adaptive frequency hopping (AFH) map by collecting packet statistics and spectrum sensing. In this paper, we revisit the AFH prediction problem. Our intention of this approach is that proposing better way to label data set to train Support Vector Machine (SVM) that could be done without measuring packet rates by visiting all 79 channels. We build a prototype of AFH prediction technique with a Ubertooth and a SVM. Our result shows that high accuracy can be achieved without the packet-based classifier of BlueEar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信