求解Kawahara方程的小波数值格式与VIM的比较

Q4 Mathematics
Kamel Al-khaled
{"title":"求解Kawahara方程的小波数值格式与VIM的比较","authors":"Kamel Al-khaled","doi":"10.7546/GIQ-20-2019-79-87","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce a comparison of variation iteration method and wavelet basis method for the numerical solution of the Kawahara equation. Test problem is used to compare between the two methods. The comparison shows that variation iteration method is efficient and easy to use. On the other hand, the wavelet method is more stable as time increases. MSC : 35Q53, 65M60, 65R20","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet-Based Numerical Scheme Compared with VIM for Solving Kawahara Equation\",\"authors\":\"Kamel Al-khaled\",\"doi\":\"10.7546/GIQ-20-2019-79-87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to introduce a comparison of variation iteration method and wavelet basis method for the numerical solution of the Kawahara equation. Test problem is used to compare between the two methods. The comparison shows that variation iteration method is efficient and easy to use. On the other hand, the wavelet method is more stable as time increases. MSC : 35Q53, 65M60, 65R20\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-20-2019-79-87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-20-2019-79-87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了变分迭代法与小波基法在Kawahara方程数值解中的比较。用测试问题对两种方法进行比较。对比结果表明,变分迭代法是一种高效且易于使用的方法。另一方面,小波方法随着时间的增加而更加稳定。MSC: 35q53, 65m60, 65r20
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet-Based Numerical Scheme Compared with VIM for Solving Kawahara Equation
This paper aims to introduce a comparison of variation iteration method and wavelet basis method for the numerical solution of the Kawahara equation. Test problem is used to compare between the two methods. The comparison shows that variation iteration method is efficient and easy to use. On the other hand, the wavelet method is more stable as time increases. MSC : 35Q53, 65M60, 65R20
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信