用合成FSU模型评价脊柱融合装置的运动稳定性

T. Hansen
{"title":"用合成FSU模型评价脊柱融合装置的运动稳定性","authors":"T. Hansen","doi":"10.1520/JAI103496","DOIUrl":null,"url":null,"abstract":"The purpose of the paper is to open discussion for an alternative methodology for stability testing of spinal fusion devices that does not require cadaveric tissue. A simulated single level functional spinal unit (FSU) model was used to evaluate spinal fusion devices as an alternative to using cadaveric human tissue models. Initially, this study was proposed as a feasibility investigation prior to investing in a cadaveric study, but was then developed into an alternative, stand-alone method that eliminates variabilities associated with cadaveric tissue testing for providing comparison testing between spinal devices. The objective of this paper is to present the development of the synthetic FSU model and the apparatus for providing kinematic stability testing on lumbar interbody spinal devices. The synthetic model geometry was based on morphological parameters for the lumbar spine using rigid foam per ASTM F1839. A universal servo-controlled test frame provided the pure moment loading through a system of cables and pulleys for the application of flexion-extension, lateral bending, and axial rotation. Comparable testing was performed using short cyclical, fully reversing runs up to 50 cycles where the last ten cycles were evaluated.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":"91 1","pages":"103496"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematic Stability Evaluation of Spinal Fusion Devices by Synthetic FSU Model\",\"authors\":\"T. Hansen\",\"doi\":\"10.1520/JAI103496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the paper is to open discussion for an alternative methodology for stability testing of spinal fusion devices that does not require cadaveric tissue. A simulated single level functional spinal unit (FSU) model was used to evaluate spinal fusion devices as an alternative to using cadaveric human tissue models. Initially, this study was proposed as a feasibility investigation prior to investing in a cadaveric study, but was then developed into an alternative, stand-alone method that eliminates variabilities associated with cadaveric tissue testing for providing comparison testing between spinal devices. The objective of this paper is to present the development of the synthetic FSU model and the apparatus for providing kinematic stability testing on lumbar interbody spinal devices. The synthetic model geometry was based on morphological parameters for the lumbar spine using rigid foam per ASTM F1839. A universal servo-controlled test frame provided the pure moment loading through a system of cables and pulleys for the application of flexion-extension, lateral bending, and axial rotation. Comparable testing was performed using short cyclical, fully reversing runs up to 50 cycles where the last ten cycles were evaluated.\",\"PeriodicalId\":15057,\"journal\":{\"name\":\"Journal of Astm International\",\"volume\":\"91 1\",\"pages\":\"103496\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astm International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/JAI103496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI103496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是为不需要尸体组织的脊柱融合装置稳定性测试的替代方法展开讨论。模拟单节段功能脊柱单元(FSU)模型用于评估脊柱融合装置是否可以替代尸体人体组织模型。最初,这项研究是在投资于尸体研究之前提出的可行性调查,但随后发展成为一种替代的,独立的方法,消除了与尸体组织测试相关的可变性,以提供脊柱装置之间的比较测试。本文的目的是介绍合成FSU模型的发展和提供腰椎体间脊柱装置运动稳定性测试的装置。合成模型的几何形状基于腰椎的形态参数,使用符合ASTM F1839的硬质泡沫。通用伺服控制的测试框架通过电缆和滑轮系统提供纯力矩加载,用于弯曲-延伸,侧向弯曲和轴向旋转。可比较的测试使用短周期、最多50个循环的完全反转运行,其中最后10个循环进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematic Stability Evaluation of Spinal Fusion Devices by Synthetic FSU Model
The purpose of the paper is to open discussion for an alternative methodology for stability testing of spinal fusion devices that does not require cadaveric tissue. A simulated single level functional spinal unit (FSU) model was used to evaluate spinal fusion devices as an alternative to using cadaveric human tissue models. Initially, this study was proposed as a feasibility investigation prior to investing in a cadaveric study, but was then developed into an alternative, stand-alone method that eliminates variabilities associated with cadaveric tissue testing for providing comparison testing between spinal devices. The objective of this paper is to present the development of the synthetic FSU model and the apparatus for providing kinematic stability testing on lumbar interbody spinal devices. The synthetic model geometry was based on morphological parameters for the lumbar spine using rigid foam per ASTM F1839. A universal servo-controlled test frame provided the pure moment loading through a system of cables and pulleys for the application of flexion-extension, lateral bending, and axial rotation. Comparable testing was performed using short cyclical, fully reversing runs up to 50 cycles where the last ten cycles were evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信