{"title":"非接触电容耦合体通道通信的自动损耗补偿系统","authors":"Jian Zhao, Jingna Mao, Tong Zhou, Longqiang Lai, Huazhong Yang, Bo Zhao","doi":"10.1109/ISCAS.2018.8351340","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel auto loss compensation (ALC) system to enable non-contact operations for capacitive coupled body channel communication (CC-BCC). The system employs a time-division compensation mismatch indicator (CMI) to continuously monitor the compensation error, and dynamically adjust the compensation inductor through a PI controller. With the close-loop topology, the proposed ALC system has three advantages: First, the path loss induced by non-contact status and backward coupling effect can be compensated simultaneously; Second, this system can dynamically attenuate the path losses, even when the channel characteristics vary with time; Third, this system has high robustness, which is insusceptible to channel variations; The simulation results show that the loss reduction of the proposed ALC system is 18 dB higher than the conventional compensation technique in the worst case.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"30 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Auto Loss Compensation System for Non-contact Capacitive Coupled Body Channel Communication\",\"authors\":\"Jian Zhao, Jingna Mao, Tong Zhou, Longqiang Lai, Huazhong Yang, Bo Zhao\",\"doi\":\"10.1109/ISCAS.2018.8351340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel auto loss compensation (ALC) system to enable non-contact operations for capacitive coupled body channel communication (CC-BCC). The system employs a time-division compensation mismatch indicator (CMI) to continuously monitor the compensation error, and dynamically adjust the compensation inductor through a PI controller. With the close-loop topology, the proposed ALC system has three advantages: First, the path loss induced by non-contact status and backward coupling effect can be compensated simultaneously; Second, this system can dynamically attenuate the path losses, even when the channel characteristics vary with time; Third, this system has high robustness, which is insusceptible to channel variations; The simulation results show that the loss reduction of the proposed ALC system is 18 dB higher than the conventional compensation technique in the worst case.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"30 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Auto Loss Compensation System for Non-contact Capacitive Coupled Body Channel Communication
This paper proposes a novel auto loss compensation (ALC) system to enable non-contact operations for capacitive coupled body channel communication (CC-BCC). The system employs a time-division compensation mismatch indicator (CMI) to continuously monitor the compensation error, and dynamically adjust the compensation inductor through a PI controller. With the close-loop topology, the proposed ALC system has three advantages: First, the path loss induced by non-contact status and backward coupling effect can be compensated simultaneously; Second, this system can dynamically attenuate the path losses, even when the channel characteristics vary with time; Third, this system has high robustness, which is insusceptible to channel variations; The simulation results show that the loss reduction of the proposed ALC system is 18 dB higher than the conventional compensation technique in the worst case.