二种和三种种群模型的稳定性研究

Rezaul Karim, M. A. Arefin, Amina Tahsin, Md Abdus Sattar
{"title":"二种和三种种群模型的稳定性研究","authors":"Rezaul Karim, M. A. Arefin, Amina Tahsin, Md Abdus Sattar","doi":"10.37516/ADV.MATH.SCI.2020.0122","DOIUrl":null,"url":null,"abstract":"In this article, we have discussed the stability of second order linear and non-linear systems by characteristic roots. In the case of non-linear system, we linearize the nonlinear system under certain specified conditions and study the stability of critical points of the linearized systems. Necessary theories have been presented, applied, and illustrated with examples. A self-contained theory for a homogeneous linear system of third order is built by using the basic concept of the differential equation.","PeriodicalId":53941,"journal":{"name":"Advances and Applications in Mathematical Sciences","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A STUDY ABOUT STABILITY OF TWO AND THREE SPECIES POPULATION MODELS\",\"authors\":\"Rezaul Karim, M. A. Arefin, Amina Tahsin, Md Abdus Sattar\",\"doi\":\"10.37516/ADV.MATH.SCI.2020.0122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we have discussed the stability of second order linear and non-linear systems by characteristic roots. In the case of non-linear system, we linearize the nonlinear system under certain specified conditions and study the stability of critical points of the linearized systems. Necessary theories have been presented, applied, and illustrated with examples. A self-contained theory for a homogeneous linear system of third order is built by using the basic concept of the differential equation.\",\"PeriodicalId\":53941,\"journal\":{\"name\":\"Advances and Applications in Mathematical Sciences\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances and Applications in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37516/ADV.MATH.SCI.2020.0122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37516/ADV.MATH.SCI.2020.0122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用特征根讨论了二阶线性和非线性系统的稳定性问题。对于非线性系统,我们在一定条件下对非线性系统进行线性化,并研究线性化后系统临界点的稳定性。必要的理论已经提出,应用,并举例说明。利用微分方程的基本概念,建立了三阶齐次线性系统的自含理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A STUDY ABOUT STABILITY OF TWO AND THREE SPECIES POPULATION MODELS
In this article, we have discussed the stability of second order linear and non-linear systems by characteristic roots. In the case of non-linear system, we linearize the nonlinear system under certain specified conditions and study the stability of critical points of the linearized systems. Necessary theories have been presented, applied, and illustrated with examples. A self-contained theory for a homogeneous linear system of third order is built by using the basic concept of the differential equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信