多边形同余概念化解释模型(MICP) /多边形同余概念化解释模型(MICP)

C. A. Pena, Mirela Rigo-Lemini
{"title":"多边形同余概念化解释模型(MICP) /多边形同余概念化解释模型(MICP)","authors":"C. A. Pena, Mirela Rigo-Lemini","doi":"10.51272/PMENA.42.2020-96","DOIUrl":null,"url":null,"abstract":"The document presents a set of categories for the analysis of the conceptualization of the congruence of polygons a central theme in school mathematics and details the application of the analytical tools used, derived from Grounded Theory, in this construction. This set of categories is called ‘Interpretive Model of the Conceptualization of Polygon Congruence’ (MICP). This model emerged from the interpretive analysis of empirical data recollected during the investigation. The MICP categories can be used by teachers or researchers to cover different didactic objectives (e.g., interpret the resolution of tasks with congruence content; prepare student profiles or identify their difficulties. See Peña, 2019) and it is relevant because it does not seem to exist in the literature a similar model that covers the previously stated objectives.","PeriodicalId":68089,"journal":{"name":"数学教学通讯","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretive model of the conceptualization of the congruence of polygons (MICP) / Modelo Interpretativo de la Conceptualización de la Congruencia de Polígonos (MICP)\",\"authors\":\"C. A. Pena, Mirela Rigo-Lemini\",\"doi\":\"10.51272/PMENA.42.2020-96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The document presents a set of categories for the analysis of the conceptualization of the congruence of polygons a central theme in school mathematics and details the application of the analytical tools used, derived from Grounded Theory, in this construction. This set of categories is called ‘Interpretive Model of the Conceptualization of Polygon Congruence’ (MICP). This model emerged from the interpretive analysis of empirical data recollected during the investigation. The MICP categories can be used by teachers or researchers to cover different didactic objectives (e.g., interpret the resolution of tasks with congruence content; prepare student profiles or identify their difficulties. See Peña, 2019) and it is relevant because it does not seem to exist in the literature a similar model that covers the previously stated objectives.\",\"PeriodicalId\":68089,\"journal\":{\"name\":\"数学教学通讯\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学教学通讯\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.51272/PMENA.42.2020-96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学教学通讯","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.51272/PMENA.42.2020-96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该文件提出了一组用于分析多边形同余概念的类别,这是学校数学中的一个中心主题,并详细介绍了在此构建中所使用的分析工具的应用,这些工具来源于扎根理论。这组范畴被称为“多边形同余概念化的解释模型”(MICP)。该模型来自对调查期间收集的经验数据的解释性分析。教师或研究人员可以使用MICP类别来涵盖不同的教学目标(例如,解释具有一致性内容的任务的解决方案;准备学生简介或确定他们的困难。见Peña, 2019),它是相关的,因为它似乎不存在一个类似的模型,涵盖了前面所述的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretive model of the conceptualization of the congruence of polygons (MICP) / Modelo Interpretativo de la Conceptualización de la Congruencia de Polígonos (MICP)
The document presents a set of categories for the analysis of the conceptualization of the congruence of polygons a central theme in school mathematics and details the application of the analytical tools used, derived from Grounded Theory, in this construction. This set of categories is called ‘Interpretive Model of the Conceptualization of Polygon Congruence’ (MICP). This model emerged from the interpretive analysis of empirical data recollected during the investigation. The MICP categories can be used by teachers or researchers to cover different didactic objectives (e.g., interpret the resolution of tasks with congruence content; prepare student profiles or identify their difficulties. See Peña, 2019) and it is relevant because it does not seem to exist in the literature a similar model that covers the previously stated objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
22282
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信