Disholin Dennison Priya, T. Rajesh, Rachel Syam Sundar, Chandrasekhar Narendhar
{"title":"氧化铁纳米颗粒-表征和抗菌研究","authors":"Disholin Dennison Priya, T. Rajesh, Rachel Syam Sundar, Chandrasekhar Narendhar","doi":"10.21477/ijapsr.6.3.01","DOIUrl":null,"url":null,"abstract":"Nanotechnology is one of the most promising technologies that give us better outcomes from biological and industrial issues. This work ismainly based on the green synthesis of iron oxide nanoparticles, assisted by the flower extract. The nanoparticles were synthesized and characterized using UV Visible spectroscopy with characteristic absorbance peaks at 300 nm and 310 nm. Prominent Fourier-Transform Infrared Spectroscopy (FTIR) peaks were obtained corresponding to phenols, amide group, aromatic ring, hydroxyl group, and carbonate ions involved in the stabilization of iron oxide nanoparticles formation. Dynamic light scattering analysis of nanoparticles showed the average sizes as 80.7 nm. Scanning electron microscope images revealed that the size of iron nanoparticles in the range of 160-300 nm. The green synthesized iron nanoparticles have promising potential to inhibit the growth of bacteria. Iron oxide nanoparticles inhibit E. coli, B. subtilis, P. aeruginosa was also enumerated as antimicrobial study. The phytochemicals alkaloid, flavonoid, glycoside, terpenoid, and saponin present in theSenna auriculata may be attributed to reducing iron oxidenanoparticles.","PeriodicalId":13749,"journal":{"name":"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron Oxide Nanoparticles – Characterization and Antimicrobial Studies\",\"authors\":\"Disholin Dennison Priya, T. Rajesh, Rachel Syam Sundar, Chandrasekhar Narendhar\",\"doi\":\"10.21477/ijapsr.6.3.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology is one of the most promising technologies that give us better outcomes from biological and industrial issues. This work ismainly based on the green synthesis of iron oxide nanoparticles, assisted by the flower extract. The nanoparticles were synthesized and characterized using UV Visible spectroscopy with characteristic absorbance peaks at 300 nm and 310 nm. Prominent Fourier-Transform Infrared Spectroscopy (FTIR) peaks were obtained corresponding to phenols, amide group, aromatic ring, hydroxyl group, and carbonate ions involved in the stabilization of iron oxide nanoparticles formation. Dynamic light scattering analysis of nanoparticles showed the average sizes as 80.7 nm. Scanning electron microscope images revealed that the size of iron nanoparticles in the range of 160-300 nm. The green synthesized iron nanoparticles have promising potential to inhibit the growth of bacteria. Iron oxide nanoparticles inhibit E. coli, B. subtilis, P. aeruginosa was also enumerated as antimicrobial study. The phytochemicals alkaloid, flavonoid, glycoside, terpenoid, and saponin present in theSenna auriculata may be attributed to reducing iron oxidenanoparticles.\",\"PeriodicalId\":13749,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21477/ijapsr.6.3.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21477/ijapsr.6.3.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iron Oxide Nanoparticles – Characterization and Antimicrobial Studies
Nanotechnology is one of the most promising technologies that give us better outcomes from biological and industrial issues. This work ismainly based on the green synthesis of iron oxide nanoparticles, assisted by the flower extract. The nanoparticles were synthesized and characterized using UV Visible spectroscopy with characteristic absorbance peaks at 300 nm and 310 nm. Prominent Fourier-Transform Infrared Spectroscopy (FTIR) peaks were obtained corresponding to phenols, amide group, aromatic ring, hydroxyl group, and carbonate ions involved in the stabilization of iron oxide nanoparticles formation. Dynamic light scattering analysis of nanoparticles showed the average sizes as 80.7 nm. Scanning electron microscope images revealed that the size of iron nanoparticles in the range of 160-300 nm. The green synthesized iron nanoparticles have promising potential to inhibit the growth of bacteria. Iron oxide nanoparticles inhibit E. coli, B. subtilis, P. aeruginosa was also enumerated as antimicrobial study. The phytochemicals alkaloid, flavonoid, glycoside, terpenoid, and saponin present in theSenna auriculata may be attributed to reducing iron oxidenanoparticles.