A. Gradoboev, K. N. Orlova, V. V. Sednev, F. Zhamaldinov
{"title":"led供电方式对γ射线暴露电阻的影响","authors":"A. Gradoboev, K. N. Orlova, V. V. Sednev, F. Zhamaldinov","doi":"10.30791/1028-978x-2022-7-5-13","DOIUrl":null,"url":null,"abstract":"The paper presents results of a study of the influence of active and passive power modes on the resistance to gamma-quantum irradiation of the LED manufactured on the basis of AlGaAs multilayer heterostructures. Three characteristic stages of radiation power reduction are distinguished for the studied LEDs irrespective of irradiation supply mode. In this case, the second stage is described by a higher damage factor and the third stage is distinguished by the appearance of catastrophic failures. Two differently directed processes of radiation power variation are observed during the irradiation of LED in active modes. It is supposed that the first process is caused by the power reduction of LED emission due to the injection of the corresponding radiation defects. The second process is caused by a partial recovery of the emission power due to radiation, radiation-thermal, and/or electrostimulated annealing of a portion of the defects created. The observed recovery of the radiation power in the active supply mode of the LEDs during irradiation significantly increases their resistance to gamma-quantum irradiation.","PeriodicalId":20003,"journal":{"name":"Perspektivnye Materialy","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the power supply mode of leds on the resistance to exposure to gamma quants\",\"authors\":\"A. Gradoboev, K. N. Orlova, V. V. Sednev, F. Zhamaldinov\",\"doi\":\"10.30791/1028-978x-2022-7-5-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents results of a study of the influence of active and passive power modes on the resistance to gamma-quantum irradiation of the LED manufactured on the basis of AlGaAs multilayer heterostructures. Three characteristic stages of radiation power reduction are distinguished for the studied LEDs irrespective of irradiation supply mode. In this case, the second stage is described by a higher damage factor and the third stage is distinguished by the appearance of catastrophic failures. Two differently directed processes of radiation power variation are observed during the irradiation of LED in active modes. It is supposed that the first process is caused by the power reduction of LED emission due to the injection of the corresponding radiation defects. The second process is caused by a partial recovery of the emission power due to radiation, radiation-thermal, and/or electrostimulated annealing of a portion of the defects created. The observed recovery of the radiation power in the active supply mode of the LEDs during irradiation significantly increases their resistance to gamma-quantum irradiation.\",\"PeriodicalId\":20003,\"journal\":{\"name\":\"Perspektivnye Materialy\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspektivnye Materialy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30791/1028-978x-2022-7-5-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspektivnye Materialy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30791/1028-978x-2022-7-5-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of the power supply mode of leds on the resistance to exposure to gamma quants
The paper presents results of a study of the influence of active and passive power modes on the resistance to gamma-quantum irradiation of the LED manufactured on the basis of AlGaAs multilayer heterostructures. Three characteristic stages of radiation power reduction are distinguished for the studied LEDs irrespective of irradiation supply mode. In this case, the second stage is described by a higher damage factor and the third stage is distinguished by the appearance of catastrophic failures. Two differently directed processes of radiation power variation are observed during the irradiation of LED in active modes. It is supposed that the first process is caused by the power reduction of LED emission due to the injection of the corresponding radiation defects. The second process is caused by a partial recovery of the emission power due to radiation, radiation-thermal, and/or electrostimulated annealing of a portion of the defects created. The observed recovery of the radiation power in the active supply mode of the LEDs during irradiation significantly increases their resistance to gamma-quantum irradiation.