CAT(0)立方配合物接触图的自同构

Elia Fioravanti
{"title":"CAT(0)立方配合物接触图的自同构","authors":"Elia Fioravanti","doi":"10.1093/imrn/rnaa280","DOIUrl":null,"url":null,"abstract":"We show that, under weak assumptions, the automorphism group of a ${\\rm CAT(0)}$ cube complex $X$ coincides with the automorphism group of Hagen's contact graph $\\mathcal{C}(X)$. The result holds, in particular, for universal covers of Salvetti complexes, where it provides an analogue of Ivanov's theorem on curve graphs of non-sporadic surfaces. This highlights a contrast between contact graphs and Kim-Koberda extension graphs, which have much larger automorphism group. We also study contact graphs associated to Davis complexes of right-angled Coxeter groups. We show that these contact graphs are less well-behaved and describe exactly when they have more automorphisms than the universal cover of the Davis complex.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automorphisms of Contact Graphs of CAT(0) Cube Complexes\",\"authors\":\"Elia Fioravanti\",\"doi\":\"10.1093/imrn/rnaa280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that, under weak assumptions, the automorphism group of a ${\\\\rm CAT(0)}$ cube complex $X$ coincides with the automorphism group of Hagen's contact graph $\\\\mathcal{C}(X)$. The result holds, in particular, for universal covers of Salvetti complexes, where it provides an analogue of Ivanov's theorem on curve graphs of non-sporadic surfaces. This highlights a contrast between contact graphs and Kim-Koberda extension graphs, which have much larger automorphism group. We also study contact graphs associated to Davis complexes of right-angled Coxeter groups. We show that these contact graphs are less well-behaved and describe exactly when they have more automorphisms than the universal cover of the Davis complex.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnaa280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了在弱假设下,${\rm CAT(0)}$立方体复形$X$的自同构群与Hagen的接触图$\mathcal{C}(X)$的自同构群重合。这个结果特别适用于Salvetti复合体的泛复盖,它提供了在非散点曲面曲线图上的伊万诺夫定理的一个类比。这突出了接触图和Kim-Koberda扩展图之间的对比,后者具有更大的自同构群。我们也研究了与直角Coxeter群的Davis复合体相关的接触图。我们证明了这些接触图表现得不太好,并且准确地描述了当它们比戴维斯复合体的普遍覆盖有更多的自同构时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automorphisms of Contact Graphs of CAT(0) Cube Complexes
We show that, under weak assumptions, the automorphism group of a ${\rm CAT(0)}$ cube complex $X$ coincides with the automorphism group of Hagen's contact graph $\mathcal{C}(X)$. The result holds, in particular, for universal covers of Salvetti complexes, where it provides an analogue of Ivanov's theorem on curve graphs of non-sporadic surfaces. This highlights a contrast between contact graphs and Kim-Koberda extension graphs, which have much larger automorphism group. We also study contact graphs associated to Davis complexes of right-angled Coxeter groups. We show that these contact graphs are less well-behaved and describe exactly when they have more automorphisms than the universal cover of the Davis complex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信