鼻道特性对颗粒沉积的影响

J. Kesavanathan, R. Bascom, D. Swift
{"title":"鼻道特性对颗粒沉积的影响","authors":"J. Kesavanathan, R. Bascom, D. Swift","doi":"10.1089/JAM.1998.11.27","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study determined the effect of nostril dimensions, nasal passage geometry, and nasal resistance (R) on particle deposition efficiency (PDE) in 40 healthy, nonsmoking adults (24 male, 16 female) at a constant flow rate. An aerodynamic particle sizer measured the diameter and concentration of a polydispersed (1−10-μm diameter) aerosol drawn unidirectionally into the nose and out the mouth. For each particle size, the concentration of particles entering the nose (Cin) and leaving the mouth (Cout) was measured. Nasal PDE, defined as (Cin − Cout)/Cin*100, was calculated for bilateral and unilateral flow. A mixed, nonlinear model was used to fit the PDE to two models based on two sets of specifications. The geometric model included particle aerodynamic diameter (da), nostril dimensions, and minimum nasal cross-sectional area (Amin); the resistance model included particle da and R. Left and right nasal passage PDE significantly correlated for 2- to 6-μm diameter particle sizes. The results showed t...","PeriodicalId":14879,"journal":{"name":"Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung","volume":"32 1","pages":"27-39"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"The effect of nasal passage characteristics on particle deposition\",\"authors\":\"J. Kesavanathan, R. Bascom, D. Swift\",\"doi\":\"10.1089/JAM.1998.11.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study determined the effect of nostril dimensions, nasal passage geometry, and nasal resistance (R) on particle deposition efficiency (PDE) in 40 healthy, nonsmoking adults (24 male, 16 female) at a constant flow rate. An aerodynamic particle sizer measured the diameter and concentration of a polydispersed (1−10-μm diameter) aerosol drawn unidirectionally into the nose and out the mouth. For each particle size, the concentration of particles entering the nose (Cin) and leaving the mouth (Cout) was measured. Nasal PDE, defined as (Cin − Cout)/Cin*100, was calculated for bilateral and unilateral flow. A mixed, nonlinear model was used to fit the PDE to two models based on two sets of specifications. The geometric model included particle aerodynamic diameter (da), nostril dimensions, and minimum nasal cross-sectional area (Amin); the resistance model included particle da and R. Left and right nasal passage PDE significantly correlated for 2- to 6-μm diameter particle sizes. The results showed t...\",\"PeriodicalId\":14879,\"journal\":{\"name\":\"Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung\",\"volume\":\"32 1\",\"pages\":\"27-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/JAM.1998.11.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine-deposition Clearance and Effects in The Lung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/JAM.1998.11.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

本研究测定了40名健康非吸烟成人(男性24人,女性16人)在恒定流速下,鼻孔尺寸、鼻道几何形状和鼻阻力(R)对颗粒沉积效率(PDE)的影响。空气动力学粒度仪测量了单向吸入和流出的多分散气溶胶(直径1 ~ 10 μm)的直径和浓度。对于每种粒径,测量进入鼻腔(Cin)和离开口腔(Cout)的颗粒浓度。计算双侧和单侧血流的鼻腔PDE,定义为(Cin−Cout)/Cin*100。采用混合非线性模型对基于两组规格的两个模型进行了PDE拟合。几何模型包括颗粒气动直径(da)、鼻孔尺寸和最小鼻截面积(Amin);2 ~ 6 μm粒径的左、右鼻道PDE呈显著相关。结果表明……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of nasal passage characteristics on particle deposition
ABSTRACT This study determined the effect of nostril dimensions, nasal passage geometry, and nasal resistance (R) on particle deposition efficiency (PDE) in 40 healthy, nonsmoking adults (24 male, 16 female) at a constant flow rate. An aerodynamic particle sizer measured the diameter and concentration of a polydispersed (1−10-μm diameter) aerosol drawn unidirectionally into the nose and out the mouth. For each particle size, the concentration of particles entering the nose (Cin) and leaving the mouth (Cout) was measured. Nasal PDE, defined as (Cin − Cout)/Cin*100, was calculated for bilateral and unilateral flow. A mixed, nonlinear model was used to fit the PDE to two models based on two sets of specifications. The geometric model included particle aerodynamic diameter (da), nostril dimensions, and minimum nasal cross-sectional area (Amin); the resistance model included particle da and R. Left and right nasal passage PDE significantly correlated for 2- to 6-μm diameter particle sizes. The results showed t...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信