霍奇-亥姆霍兹分解中标量场giboumin方法的收敛性分析

IF 0.3 Q4 MATHEMATICS, APPLIED
Chohong Min, G. Yoon
{"title":"霍奇-亥姆霍兹分解中标量场giboumin方法的收敛性分析","authors":"Chohong Min, G. Yoon","doi":"10.12941/JKSIAM.2014.18.305","DOIUrl":null,"url":null,"abstract":"The Hodge-Helmholtz decomposition splits a vector field into the unique sum of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a bounded domain, a boundary condition needs to be supplied to the decomposition. The decomposition with the non-penetration boundary condition is equivalent to solving the Poisson equation with the Neumann boundary condition. The Gibou-Min method is an application of the Poisson solver by Purvis and Burkhalter to the decomposition. Using the L 2 -orthogonality between the error vector and the consistency, the convergence for approximating the divergence-free vector field was recently proved to be O(h 1.5 ) with step size h: In this work, we analyze the convergence of the irrotattional in the decomposition. To the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of the O(h) convergence for the scalar variable of the gradient field in a domain with general intersection property.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"79 1","pages":"305-316"},"PeriodicalIF":0.3000,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD FOR THE SCALAR FIELD IN HODGE-HELMHOLTZ DECOMPOSITION\",\"authors\":\"Chohong Min, G. Yoon\",\"doi\":\"10.12941/JKSIAM.2014.18.305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hodge-Helmholtz decomposition splits a vector field into the unique sum of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a bounded domain, a boundary condition needs to be supplied to the decomposition. The decomposition with the non-penetration boundary condition is equivalent to solving the Poisson equation with the Neumann boundary condition. The Gibou-Min method is an application of the Poisson solver by Purvis and Burkhalter to the decomposition. Using the L 2 -orthogonality between the error vector and the consistency, the convergence for approximating the divergence-free vector field was recently proved to be O(h 1.5 ) with step size h: In this work, we analyze the convergence of the irrotattional in the decomposition. To the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of the O(h) convergence for the scalar variable of the gradient field in a domain with general intersection property.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"79 1\",\"pages\":\"305-316\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2014-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2014.18.305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2014.18.305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

Hodge-Helmholtz分解将矢量场分解为无散度矢量场(螺线形部分)和梯度场(无旋转部分)的唯一和。在有界域中,需要为分解提供边界条件。在非穿透边界条件下的分解相当于在诺依曼边界条件下求解泊松方程。gibu - min方法是Purvis和Burkhalter将泊松求解法应用于分解的一种方法。利用误差向量与一致性之间的l2 -正交性,证明了在步长为h的情况下,逼近无散度向量场的收敛性为O(h1.5),本文分析了分解中旋转的收敛性。最后,我们引入了庞加莱不等式的离散形式,从而证明了梯度场标量变量在具有一般交性质的定域上的O(h)收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONVERGENCE ANALYSIS ON GIBOU-MIN METHOD FOR THE SCALAR FIELD IN HODGE-HELMHOLTZ DECOMPOSITION
The Hodge-Helmholtz decomposition splits a vector field into the unique sum of a divergence-free vector field (solenoidal part) and a gradient field (irrotational part). In a bounded domain, a boundary condition needs to be supplied to the decomposition. The decomposition with the non-penetration boundary condition is equivalent to solving the Poisson equation with the Neumann boundary condition. The Gibou-Min method is an application of the Poisson solver by Purvis and Burkhalter to the decomposition. Using the L 2 -orthogonality between the error vector and the consistency, the convergence for approximating the divergence-free vector field was recently proved to be O(h 1.5 ) with step size h: In this work, we analyze the convergence of the irrotattional in the decomposition. To the end, we introduce a discrete version of the Poincare inequality, which leads to a proof of the O(h) convergence for the scalar variable of the gradient field in a domain with general intersection property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信