具有非线性弹簧弯曲的矩形静电扭转执行器的解析行为

Zhixiong Xiao, W. Peng, K. Farmer
{"title":"具有非线性弹簧弯曲的矩形静电扭转执行器的解析行为","authors":"Zhixiong Xiao, W. Peng, K. Farmer","doi":"10.1109/JMEMS.2003.820265","DOIUrl":null,"url":null,"abstract":"In this paper, we study the pull-in effect for rectangular electrostatic torsion actuators by using analytical calculations that include the higher order effects of nonlinear spring bending. The calculation approach speeds the design of such systems. The method is found to be suitable for actuators with single long beam springs where the ratio of the resonant frequencies for the torsion and bending modes is up to at least 3.5, in the region where bending dominates torsion. After fitting the theory in this paper to Coventor simulation results with three nonphysical coefficients, the fractional differences between Coventor simulation and analytical calculation results are smaller than 6%. The method is also suitable for at least one class of folded spring designs, with greatly decreased bending mode displacement. The main results are also verified by comparing them with published experimental results.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"22 1","pages":"929-936"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Analytical behavior of rectangular electrostatic torsion actuators with nonlinear spring bending\",\"authors\":\"Zhixiong Xiao, W. Peng, K. Farmer\",\"doi\":\"10.1109/JMEMS.2003.820265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the pull-in effect for rectangular electrostatic torsion actuators by using analytical calculations that include the higher order effects of nonlinear spring bending. The calculation approach speeds the design of such systems. The method is found to be suitable for actuators with single long beam springs where the ratio of the resonant frequencies for the torsion and bending modes is up to at least 3.5, in the region where bending dominates torsion. After fitting the theory in this paper to Coventor simulation results with three nonphysical coefficients, the fractional differences between Coventor simulation and analytical calculation results are smaller than 6%. The method is also suitable for at least one class of folded spring designs, with greatly decreased bending mode displacement. The main results are also verified by comparing them with published experimental results.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":\"22 1\",\"pages\":\"929-936\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2003.820265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2003.820265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文采用包含非线性弹簧弯曲高阶效应的解析计算方法,研究矩形静电扭转致动器的拉入效应。这种计算方法加快了此类系统的设计速度。该方法适用于具有单长梁弹簧的执行器,其中扭转和弯曲模式的谐振频率之比至少为3.5,在弯曲主导扭转的区域。将本文理论与三个非物理系数的covenor模拟结果拟合后,covenor模拟结果与解析计算结果的分数差小于6%。该方法也适用于至少一类弯曲模态位移大大减小的折叠弹簧设计。通过与已发表的实验结果的比较,验证了主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical behavior of rectangular electrostatic torsion actuators with nonlinear spring bending
In this paper, we study the pull-in effect for rectangular electrostatic torsion actuators by using analytical calculations that include the higher order effects of nonlinear spring bending. The calculation approach speeds the design of such systems. The method is found to be suitable for actuators with single long beam springs where the ratio of the resonant frequencies for the torsion and bending modes is up to at least 3.5, in the region where bending dominates torsion. After fitting the theory in this paper to Coventor simulation results with three nonphysical coefficients, the fractional differences between Coventor simulation and analytical calculation results are smaller than 6%. The method is also suitable for at least one class of folded spring designs, with greatly decreased bending mode displacement. The main results are also verified by comparing them with published experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信