有色噪声驱动随机微分系统的预测理论

N. S. Patil, S. Sharma
{"title":"有色噪声驱动随机微分系统的预测理论","authors":"N. S. Patil, S. Sharma","doi":"10.1080/21642583.2014.906004","DOIUrl":null,"url":null,"abstract":"The standard approaches to analyse the Itô stochastic differential system are the Fokker–Planck equation and multi-dimensional Itô differential rule. In contrast to the Itô stochastic differential system, this paper develops a mathematical theory of a coloured noise process-driven stochastic differential system. More precisely, the coloured noise process-driven stochastic differential equation x˙t=f(xt)+g(xt) ξt is the subject of investigations. The statistical properties of the input noise process ξt are stationary and finite, non-zero, relatively smaller correlation time. The notion of “stochastic equivalence” coupled with stochastic differential rule plays the key role to develop the theory of this paper. The theory of the paper will be of use to analysing and control of dynamical systems embedded in the coloured noise environment.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A prediction theory for a coloured noise-driven stochastic differential system\",\"authors\":\"N. S. Patil, S. Sharma\",\"doi\":\"10.1080/21642583.2014.906004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard approaches to analyse the Itô stochastic differential system are the Fokker–Planck equation and multi-dimensional Itô differential rule. In contrast to the Itô stochastic differential system, this paper develops a mathematical theory of a coloured noise process-driven stochastic differential system. More precisely, the coloured noise process-driven stochastic differential equation x˙t=f(xt)+g(xt) ξt is the subject of investigations. The statistical properties of the input noise process ξt are stationary and finite, non-zero, relatively smaller correlation time. The notion of “stochastic equivalence” coupled with stochastic differential rule plays the key role to develop the theory of this paper. The theory of the paper will be of use to analysing and control of dynamical systems embedded in the coloured noise environment.\",\"PeriodicalId\":22127,\"journal\":{\"name\":\"Systems Science & Control Engineering: An Open Access Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering: An Open Access Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2014.906004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2014.906004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分析Itô随机微分系统的标准方法是福克-普朗克方程和多维Itô微分规则。相对于Itô随机微分系统,本文发展了有色噪声过程驱动随机微分系统的数学理论。更准确地说,有色噪声过程驱动的随机微分方程x˙t=f(xt)+g(xt) ξt是研究的主题。输入噪声过程的统计性质是平稳的、有限的、非零的、相对较小的相关时间。“随机等价”概念与随机微分规则的结合对本文的理论发展起了关键作用。本文的理论将用于分析和控制嵌入在有色噪声环境中的动力系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A prediction theory for a coloured noise-driven stochastic differential system
The standard approaches to analyse the Itô stochastic differential system are the Fokker–Planck equation and multi-dimensional Itô differential rule. In contrast to the Itô stochastic differential system, this paper develops a mathematical theory of a coloured noise process-driven stochastic differential system. More precisely, the coloured noise process-driven stochastic differential equation x˙t=f(xt)+g(xt) ξt is the subject of investigations. The statistical properties of the input noise process ξt are stationary and finite, non-zero, relatively smaller correlation time. The notion of “stochastic equivalence” coupled with stochastic differential rule plays the key role to develop the theory of this paper. The theory of the paper will be of use to analysing and control of dynamical systems embedded in the coloured noise environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信