内罚法多网格算法的收敛性

Susanne C. Brenner, Jie Zhao
{"title":"内罚法多网格算法的收敛性","authors":"Susanne C. Brenner,&nbsp;Jie Zhao","doi":"10.1002/anac.200410019","DOIUrl":null,"url":null,"abstract":"<p><i>V</i>-cycle, <i>F</i>-cycle and <i>W</i>-cycle multigrid algorithms for interior penalty methods for second order elliptic boundary value problems are studied in this paper. It is shown that these algorithms converge uniformly with respect to all grid levels if the number of smoothing steps is sufficiently large, and that the contraction numbers decrease as the number of smoothing steps increases, at a rate determined by the elliptic regularity of the problem. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"2 1","pages":"3-18"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410019","citationCount":"72","resultStr":"{\"title\":\"Convergence of Multigrid Algorithms for Interior Penalty Methods\",\"authors\":\"Susanne C. Brenner,&nbsp;Jie Zhao\",\"doi\":\"10.1002/anac.200410019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>V</i>-cycle, <i>F</i>-cycle and <i>W</i>-cycle multigrid algorithms for interior penalty methods for second order elliptic boundary value problems are studied in this paper. It is shown that these algorithms converge uniformly with respect to all grid levels if the number of smoothing steps is sufficiently large, and that the contraction numbers decrease as the number of smoothing steps increases, at a rate determined by the elliptic regularity of the problem. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"2 1\",\"pages\":\"3-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200410019\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

研究了二阶椭圆型边值问题内罚方法的V-cycle、F-cycle和W-cycle多重网格算法。结果表明,当平滑步数足够大时,这些算法对所有网格水平都是一致收敛的,并且收缩数随着平滑步数的增加而减少,其速度由问题的椭圆正则性决定。(©2005 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of Multigrid Algorithms for Interior Penalty Methods

V-cycle, F-cycle and W-cycle multigrid algorithms for interior penalty methods for second order elliptic boundary value problems are studied in this paper. It is shown that these algorithms converge uniformly with respect to all grid levels if the number of smoothing steps is sufficiently large, and that the contraction numbers decrease as the number of smoothing steps increases, at a rate determined by the elliptic regularity of the problem. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信