A. H. Nithin, Michael Hobbs, S. Sriramula, Yaji Sripada
{"title":"一种使用机器学习技术改善资产维护和管理优先级的方法","authors":"A. H. Nithin, Michael Hobbs, S. Sriramula, Yaji Sripada","doi":"10.1080/09617353.2022.2142011","DOIUrl":null,"url":null,"abstract":"Abstract Numerous services are available today to develop an optimised asset management solution to enhance asset operations by improving the system availability, decreasing down-time and operation and maintenance costs. Three cases of engineering problems are explored in this paper, with data-driven machine learning solutions proposed for these problems. The first case refers to the labour-intensive nature of criticality analysis which are used in asset management to prioritise assets. A machine learning solution is proposed by the development of a trained criticality analysis model, with a classification error of 12.35%, which could help in a better prediction of the end result by automating the process i.e. training the model. The second case looks at an application of machine learning on asset health prediction by analysing failure patterns and parameters for a machine. The model was evaluated with an error loss of 0.0024. The third case looks at an integration of the priorities related to asset maintenance and management through the development of a text classification machine learning service selector (landscape) tool and explores improvising the end-user selection of the services based on their challenges and perceived pain-points related to asset management. The model was evaluated with an accuracy of 84%.","PeriodicalId":45573,"journal":{"name":"International Journal of Reliability Quality and Safety Engineering","volume":"3 1","pages":"151 - 169"},"PeriodicalIF":0.9000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach to improve asset maintenance and management priorities using machine learning techniques\",\"authors\":\"A. H. Nithin, Michael Hobbs, S. Sriramula, Yaji Sripada\",\"doi\":\"10.1080/09617353.2022.2142011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Numerous services are available today to develop an optimised asset management solution to enhance asset operations by improving the system availability, decreasing down-time and operation and maintenance costs. Three cases of engineering problems are explored in this paper, with data-driven machine learning solutions proposed for these problems. The first case refers to the labour-intensive nature of criticality analysis which are used in asset management to prioritise assets. A machine learning solution is proposed by the development of a trained criticality analysis model, with a classification error of 12.35%, which could help in a better prediction of the end result by automating the process i.e. training the model. The second case looks at an application of machine learning on asset health prediction by analysing failure patterns and parameters for a machine. The model was evaluated with an error loss of 0.0024. The third case looks at an integration of the priorities related to asset maintenance and management through the development of a text classification machine learning service selector (landscape) tool and explores improvising the end-user selection of the services based on their challenges and perceived pain-points related to asset management. The model was evaluated with an accuracy of 84%.\",\"PeriodicalId\":45573,\"journal\":{\"name\":\"International Journal of Reliability Quality and Safety Engineering\",\"volume\":\"3 1\",\"pages\":\"151 - 169\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliability Quality and Safety Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09617353.2022.2142011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability Quality and Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09617353.2022.2142011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An approach to improve asset maintenance and management priorities using machine learning techniques
Abstract Numerous services are available today to develop an optimised asset management solution to enhance asset operations by improving the system availability, decreasing down-time and operation and maintenance costs. Three cases of engineering problems are explored in this paper, with data-driven machine learning solutions proposed for these problems. The first case refers to the labour-intensive nature of criticality analysis which are used in asset management to prioritise assets. A machine learning solution is proposed by the development of a trained criticality analysis model, with a classification error of 12.35%, which could help in a better prediction of the end result by automating the process i.e. training the model. The second case looks at an application of machine learning on asset health prediction by analysing failure patterns and parameters for a machine. The model was evaluated with an error loss of 0.0024. The third case looks at an integration of the priorities related to asset maintenance and management through the development of a text classification machine learning service selector (landscape) tool and explores improvising the end-user selection of the services based on their challenges and perceived pain-points related to asset management. The model was evaluated with an accuracy of 84%.
期刊介绍:
IJRQSE is a refereed journal focusing on both the theoretical and practical aspects of reliability, quality, and safety in engineering. The journal is intended to cover a broad spectrum of issues in manufacturing, computing, software, aerospace, control, nuclear systems, power systems, communication systems, and electronics. Papers are sought in the theoretical domain as well as in such practical fields as industry and laboratory research. The journal is published quarterly, March, June, September and December. It is intended to bridge the gap between the theoretical experts and practitioners in the academic, scientific, government, and business communities.