{"title":"自动防御网络入侵的机器学习方法","authors":"Farhaan Noor Hamdani, Farheen Siddiqui","doi":"10.7287/PEERJ.PREPRINTS.27777V1","DOIUrl":null,"url":null,"abstract":"With the advent of the internet, there is a major concern regarding the growing number of attacks, where the attacker can target any computing or network resource remotely Also, the exponential shift towards the use of smart-end technology devices, results in various security related concerns, which include detection of anomalous data traffic on the internet. Unravelling legitimate traffic from malignant traffic is a complex task itself. Many attacks affect system resources thereby degenerating their computing performance. In this paper we propose a framework of supervised model implemented using machine learning algorithms which can enhance or aid the existing intrusion detection systems, for detection of variety of attacks. Here KDD (knowledge data and discovery) dataset is used as a benchmark. In accordance with detective abilities, we also analyze their performance, accuracy, alerts-logs and compute their overall detection rate.\n These machine learning algorithms are validated and tested in terms of accuracy, precision, true-false positives and negatives. Experimental results show that these methods are effective, generating low false positives and can be operative in building a defense line against network intrusions. Further, we compare these algorithms in terms of various functional parameters","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"42 1","pages":"e27777"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine learning approach for automated defense against network intrusions\",\"authors\":\"Farhaan Noor Hamdani, Farheen Siddiqui\",\"doi\":\"10.7287/PEERJ.PREPRINTS.27777V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of the internet, there is a major concern regarding the growing number of attacks, where the attacker can target any computing or network resource remotely Also, the exponential shift towards the use of smart-end technology devices, results in various security related concerns, which include detection of anomalous data traffic on the internet. Unravelling legitimate traffic from malignant traffic is a complex task itself. Many attacks affect system resources thereby degenerating their computing performance. In this paper we propose a framework of supervised model implemented using machine learning algorithms which can enhance or aid the existing intrusion detection systems, for detection of variety of attacks. Here KDD (knowledge data and discovery) dataset is used as a benchmark. In accordance with detective abilities, we also analyze their performance, accuracy, alerts-logs and compute their overall detection rate.\\n These machine learning algorithms are validated and tested in terms of accuracy, precision, true-false positives and negatives. Experimental results show that these methods are effective, generating low false positives and can be operative in building a defense line against network intrusions. Further, we compare these algorithms in terms of various functional parameters\",\"PeriodicalId\":93040,\"journal\":{\"name\":\"PeerJ preprints\",\"volume\":\"42 1\",\"pages\":\"e27777\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ preprints\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7287/PEERJ.PREPRINTS.27777V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/PEERJ.PREPRINTS.27777V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning approach for automated defense against network intrusions
With the advent of the internet, there is a major concern regarding the growing number of attacks, where the attacker can target any computing or network resource remotely Also, the exponential shift towards the use of smart-end technology devices, results in various security related concerns, which include detection of anomalous data traffic on the internet. Unravelling legitimate traffic from malignant traffic is a complex task itself. Many attacks affect system resources thereby degenerating their computing performance. In this paper we propose a framework of supervised model implemented using machine learning algorithms which can enhance or aid the existing intrusion detection systems, for detection of variety of attacks. Here KDD (knowledge data and discovery) dataset is used as a benchmark. In accordance with detective abilities, we also analyze their performance, accuracy, alerts-logs and compute their overall detection rate.
These machine learning algorithms are validated and tested in terms of accuracy, precision, true-false positives and negatives. Experimental results show that these methods are effective, generating low false positives and can be operative in building a defense line against network intrusions. Further, we compare these algorithms in terms of various functional parameters